Gábor Mezösi, Teodóra Bata, Burghard C. Meyer, Viktória Blanka, Zsuzsanna Ladányi. Climate Change Impacts on Environmental Hazards on the Great Hungarian Plain, Carpathian Basin[J]. International Journal of Disaster Risk Science, 2014, 5(2): 136-146. doi: 10.1007/s13753-014-0016-3
Citation: Gábor Mezösi, Teodóra Bata, Burghard C. Meyer, Viktória Blanka, Zsuzsanna Ladányi. Climate Change Impacts on Environmental Hazards on the Great Hungarian Plain, Carpathian Basin[J]. International Journal of Disaster Risk Science, 2014, 5(2): 136-146. doi: 10.1007/s13753-014-0016-3

Climate Change Impacts on Environmental Hazards on the Great Hungarian Plain, Carpathian Basin

doi: 10.1007/s13753-014-0016-3
  • Available Online: 2021-04-26
  • The potential impacts of climate change on the Great Hungarian Plain based on two regional climate models, REMO and ALADIN, were analyzed using indicators for environmental hazards. As the climate parameters (temperature, precipitation, and wind) will change in the two investigated periods (2021–2050 and 2071–2100), their influences on drought, wind erosion, and inland excess water hazards are modeled by simple predictive models. Drought hazards on arable lands will increasingly affect the productivity of agriculture compared to the reference period (1961–1990). The models predict an increase between 12.3 % (REMO) and 20 % (ALADIN) in the first period, and between 35.6 % (REMO) and 45.2 % (ALADIN) in the second period. The increase of wind erosion hazards is not as obvious (+15 % for the first period in the REMO model). Inland excess water hazards are expected to be slightly reduced (-4 to 0 %) by both model predictions in the two periods without showing a clear tendency on reduction. All three indicators together give a first regional picture of potential hazards of climate change. The predictive model and data combinations of the regional climate change models and the hazard assessment models provide insights into regional and subregional impacts of climate change and will be useful in planning and land management activities.
  • loading
  • AKI (Research Institute of Agricultural Economics). 2013. Agrárgazdasági Kutató Intézet. https://www.aki.gov.hu (in Hungarian). Accessed 28 Mar 2014.
    Bakonyi, P. 2010. Flood and drought strategy of the Tisza River Basin. VITUKI, Budapest. http://www.icpdr.org/main/resources/flood-and-drought-mitigation-strategy-tisza-river-basin. Accessed 28 Mar 2014.
    Bartholy, J., R. Pongrácz, G. Gelybó, and P. Szabó. 2008. Analysis of expected climate change in the Carpathian Basin using the PRUDENCE results. Időjárás Quarterly Journal of the Hungarian Meteorological Service 112(3-4):249-264.
    Bartholy, J., R. Pongrácz, I. Pieczka, and C.S. Torma. 2011. Dynamical downscaling of projected 21st century climate for the Carpathian Basin. In Climate change-Research and technology for adaptation and mitigation, ed. J. Blanco, and H. Kheradmand, 3-22. Rijeka:InTech.
    Bihari, Z. (ed.). 2012. Drought Management Centre for South-East Europe. Budapest:OMSZ. http://www.met.hu/doc/DMCSEE/DMCSEE_final_publication.pdf. Accessed 28 Mar 2014.
    Blanka, V., G. Mezősi, and B. Meyer. 2013. Projected changes in the drought hazard in Hungary due to climate change. Időjárás Quarterly Journal of the Hungarian Meteorological Service 117(2):219-237.
    Bozán, C., J. Körösparti, L. Pásztor, L. Kuti, P. Kozák, and I. Pálfai. 2009. GIS-based mapping of excess water inundation hazard in Csongrád County (Hungary). In Proceedings of the international symposia on risk factors for environment and food safety & natural resources and sustainable development, 678-684. Faculty of Environmental Protection, Oradea, 6-7 November 2009.
    Fratini, G., M. Santini, P. Ciccioli, and R. Valentini. 2009. Evaluation of a wind erosion model in a desert area of northern Asia by eddy covariance. Earth Surface Processes and Landforms 34(13):1743-1757.
    Fryrear, D.W., A. Saleh, J.D. Bilbro, H.M. Schomberg, J.E. Stout, and T.M. Zobeck. 1998. Revised wind erosion equation (RWEQ). Wind Erosion and Water Conservation Research Unit, Technical Bulletin 1. Southern Plains Area Cropping Systems Research Laboratory, USDA-ARS. http://www.csrl.ars.usda.gov/wewc/rweq/app.pdf. Accessed 28 Mar 2014.
    Funk, R., C. Hoffmann, and M. Reiche. 2004. Methods for quantifying wind erosion in steppe regions. In Novel measurement and assessment tools for monitoring and management of land and water resources in agricultural landscapes of Central Asia, ed. L. Mueller, A. Saparov, and G. Lischeid, 315-327. Switzerland:Springer International Publishing.
    Gosic, M., and S. Trajkovic. 2013. Analysis of precipitation and drought data in Serbia over the period 1980-2010. Journal of Hydrology 494:32-42.
    Hagen, L.J. 2004. Evaluation of the wind erosion prediction system (WEPS) erosion submodel on cropland fields. Environmental Modelling and Software 19(2):171-176.
    Hazafi, L. 2003. Drought in 1.5 million hectares. World Economy (Világgazdaság). http://www.vg.hu/gazdasag/aszalykar-15-millio-hektaron-35006 (in Hungarian). Accessed 28 Mar 2014.
    HCSO (Hungarian Central Statistical Office). 2011. Environmental report, 2011. Hungarian Central Statistical Office, Budapest. https://www.ksh.hu/docs/eng/xftp/idoszaki/ekornyhelyzetkep11.pdf. Accessed 28 Mar 2014.
    HMS (Hungarian Meteorological Service). 2013. Országos Meteorológiai Szolgálat. http://www.met.hu/. Accessed 28 Mar 2014.
    IPCC (Intergovernmental Panel on Climate Change). 2007. Climate change. The physical science basis. Working Group I. Contribution to the fourth assessment report of the IPCC, ed. S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M. Tignor, and H.L. Miller. New York:Cambridge University Press.
    Julian, J.P., R.J. Davies-Colley, C.L. Gallegos, and T.V. Tran. 2013. Optical water quality of inland waters:A landscape perspective. Annals of the Association of American Geographers 103(2):309-318.
    Klik, A. 2004. Wind erosion assessment in austria using wind erosion equation and GIS. In Agricultural impacts on soil erosion and soil biodiversity:Developing indicators for policy analysis, ed. R. Francaviglia, 145-154. Rome:Proceedings from an OECD expert meeting.
    Lei, Y.D., J.A. Wang, and L.L. Luo. 2011. Drought risk assessment of China's mid-season paddy. International Journal of Disaster Risk Science 2(2):32-40.
    Li, F.R., L.F. Kang, H. Zhang, L.Y. Zhao, Y. Shirato, and I. Taniyama. 2005. Changes in intensity of wind erosion at different stages of degradation development in grasslands of Inner Mongolia, China. Journal of Arid Environments 62(4):567-585.
    Likens, G.E. (ed.). 2009. Encyclopedia of inland waters. Oxford:Elsevier/Academic Press.
    Lin, Y.Z., X.Z. Deng, and Q. Jin. 2013. Economic effects of drought on agriculture in North China. International Journal of Disaster Risk Science 4(2):59-67.
    Lóczy, D., Á. Kertész, J. Lóki, T. Kiss, P. Rózsa, G. Sipos, L. Sütő, J. Szabó, and M. Veress. 2012. Recent landform evolution in Hungary. In Recent landform evolution, ed. D. Lóczy, M. Stankoviansky, and A. Kotarba, 205-247. New York:Springer.
    Lóki, J. 2011. Research of the land forming activity of wind and protection against wind erosion in Hungary. Riscuri Si Catastrofe 9(1):83-97.
    Maracchi, G. 2000. Agricultural drought-A practical approach to definition, assessment and mitigation strategies. In Drought and drought mitigation in Europe. Advances in natural and technological hazards research14, ed. J.V. Vogt, and F. Somma, 63-78. Dordrecht:Kluwer Academic Publisher.
    Meyer, B.C., S. Rannow, S. Greiving, and D. Gruehn. 2009. Regionalisation of climate change impacts in Germany for the usage in spatial planning. GeoScape 1:34-43.
    Mezősi, G. 2011. Environmental capabilities, hazards and conflicts in Hungary. Szeged:UNIV Kiadó.
    Mezősi, G., V. Blanka, T. Bata, F. Kovács, and B. Meyer. 2013. Estimation of regional differences in wind erosion sensitivity in Hungary. Natural Hazards and Earth System Sciences Discussion 1:4713-4750.
    Mezősi, G., B.C. Meyer, W. Loibl, C. Aubrecht, P. Csorba, and T. Bata. 2013. Assessment of regional climate change impacts on Hungarian landscapes. Regional Environmental Change 13(4):797-811.
    Munson, S.M., J. Belnap, and G.S. Okin. 2011. Responses of wind erosion to climate-induced vegetation changes on the Colorado Plateau. Proceedings of the National Academy of Sciences of the United States of America 108(10):3854-3859.
    Nakicenovic, N., and R. Swart (ed.). 2000. Emissions scenarios. A special report of IPCC Working Group III. Cambridge:Cambridge University Press.
    Nováky, B. 2011. Climate change and its consequences (Az éghajlatváltozás és hatásai). In Water management in Hungary:Current situation and strategic issues (Magyarország vízgazdálkodása:Helyzetkép és stratégiai feladatok), ed. L. Somlyódy, 85-102. Budapest:MTA (in Hungarian).
    Pálfai, I. 2002. Probability of drought occurrence in Hungary. Időjárás Quarterly Journal of the Hungarian Meteorological Service 106(3-4):265-275.
    Pálfai, I. 2004. Inland excess water and drought in Hungary (Belvízek és Aszályok Magyarországon). Budapest:VITUKI (in Hungarian).
    Pálfai, I., and Á. Herceg. 2011. Droughtness of Hungary and Balkan Peninsula. Riscuri si Catastrofe 9(2):145-154.
    Péczely, G. 1998. Climatology (Éghajlattan). Budapest:Nemzeti Tankönykiadó (in Hungarian).
    Rakonczai, J., A. Farsang, G. Mezősi, and N. Gál. 2011. The conceptual background of the formation of inland excess water. Földrajzi Közlemények 135(4):339-349 (in Hungarian).
    Shao, Y.P., E. Jung, and L.M. Leslie. 2002. Numerical prediction of northeast Asian dust storms using an integrated wind erosion modeling system. Journal of Geophysical Research:Atmospheres 107(D24):AAC 21-1-23.
    Shi, K., Y.M. Li, L. Li, and H. Lu. 2013. Absorption characteristics of optically complex inland waters:Implications for water optical classification. Journal of Geophysical Research G:Biogeosciences 118(2):860-874.
    Sterk, G. 2003. Causes, consequences and control of wind erosion in Sahelian Africa:A review. Land Degradation and Development 14(1):95-108.
    Svoboda, M., D. LeComte, M. Hayes, R. Heim, K. Gleason, J. Angel, B. Rippey, R. Tinker, et al. 2002. The drought monitor. Bulletin of the American Meteorological Society 83:1181-1190.
    Szabó, L., J. Karácsony, and Z.S. Székely. 1994. Wind erosion problems in Hungary. Agrochemistry and Soil Science 43(1-2):109-112.
    Szabó, J., J. Lóki, C. Tóth, and G. Szabó. 2008. Natural hazards in Hungary. In Dimensions and trends in Hungarian geography, ed. Á. Kertész, and Z. Kovács, 55-68. Budapest:MTA.
    Szabó, P., A. Horányi, I. Krüzselyi, and G. Szépszó. 2011. The climate modelling at Hungarian Meteorological Survey:ALADIN and REMO. Budapest:OMSZ (in Hungarian).
    Széll, E., and K. Dévényi. 2008. Average yield in 2007-Reasons and lessons in maize cultivation. Agro Napló 12(1):1-7 (in Hungarian).
    Thornthwaite, C.W. 1948. An approach toward a rational classification of climate. Geographical Review 38(1):55-94.
    Toure, A.A., J.L. Rajot, Z. Garba, B. Marticorena, C. Petit, and D. Sebag. 2011. Impact of very low crop residues cover on wind erosion in the Sahel. CATENA 85(3):205-214.
    van Leeuwen, B. 2012. Artificial neural networks and geographic information systems for inland excess water classification. Ph.D. dissertation, University of Szeged, Hungary.
    Warrick, R.A., P.B. Trainer, E.J. Baker, and W. Brinkman. 1975. Drought hazard in the United States:A research assessment. NSF program on technology, environment and man monograph. Institute of Behavioral Science, University of Colorado.
    Webb, N.P., H.A. McGowan, S.R. Phinn, and G.H. McTainsh. 2006. AUSLEM (Australian Land Erodibility Model):A tool for identifying wind erosion hazard in Australia. Geomorphology 78(3-4):179-200.
    WMO (World Meteorological Organization), UNCCD (United Nations Convention to Combat Desertification), FAO (Food and Agriculture Organization of the United Nations), and UNW-DPC (UN-Water Decade Programme on Capacity Development). 2013. Country report:Drought conditions and management strategies in Serbia. Initiative of "Capacity development to support national drought management policy". http://www.ais.unwater.org/ais/pluginfile.php/548/mod_page/content/65/Serbia_CountryReport.pdf. Accessed 28 Mar 2014.
    Woodruff, N.P., and F.H. Siddoway. 1965. A wind erosion equation. Soil Science Society of America Journal 29(5):602-608.
    Ye, T., P.J. Shi, J.A. Wang, L. Liu, Y. Fan, and J. Hu. 2012. China's drought disaster risk management:Perspective of severe droughts in 2009-2010. International Journal of Disaster Risk Science 3(2):84-97.
    Zeng, N. 2003. Drought in the Sahel. Science 302(5647):999-1000.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (50) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return