Lino Naranjo, Michael H. Glantz, Sayat Temirbekov, Ivan J. Ramírez. El Niño and the Köppen–Geiger Classification: A Prototype Concept and Methodology for Mapping Impacts in Central America and the Circum-Caribbean[J]. International Journal of Disaster Risk Science, 2018, 9(2): 224-236. doi: 10.1007/s13753-018-0176-7
Citation: Lino Naranjo, Michael H. Glantz, Sayat Temirbekov, Ivan J. Ramírez. El Niño and the Köppen–Geiger Classification: A Prototype Concept and Methodology for Mapping Impacts in Central America and the Circum-Caribbean[J]. International Journal of Disaster Risk Science, 2018, 9(2): 224-236. doi: 10.1007/s13753-018-0176-7

El Niño and the Köppen–Geiger Classification: A Prototype Concept and Methodology for Mapping Impacts in Central America and the Circum-Caribbean

doi: 10.1007/s13753-018-0176-7
Funds:

This study was made possible through the support provided by the Office of US Foreign Disaster Assistance, Bureau for Democracy, Conflict and Humanitarian Assistance, US Agency for International Development. The opinions expressed in this publication are those of the authors and do not necessarily reflect views of the US Agency for International Development. We thank the reviewers and editorial staff for their suggestions to improve the manuscript.

  • Available Online: 2021-04-26
  • The aim of this pilot study conducted by the consortium for capacity building was to develop a prototype concept and methodology for the classification and visualization of the geographic impacts of El Niño on annual climates and seasonality. Our study is based on the Köppen–Geiger climate classification scheme for a set of selected countries affected by strong El Niños in Latin America. By identifying and visualizing the annual and seasonal changes in regional, national, or subnational climate regimes that generally accompany an El Niño event, this research proposes an efficient way to detect and describe climate shifts and variability across time and space. Such knowledge provides a support tool for risk analysis and can potentially enhance government efforts of climate risk management, including disaster risk reduction activities that prevent, mitigate, and improve coping responses to El Niño-related hydrometeorological threats. Details of the conceptual approach and methodology to classifying and mapping El Niño’s impacts are described and explained using the Central American and circum-Caribbean region as a case study. The potential applications for disaster risk reduction as well as its limitations and future work are also discussed.
  • loading
  • Bello, O., L. Ortiz, and J. Samaniego. 2014. Estimation of the effects of disasters in Latin America, 1972–2010 (La estimacion de los efectos de los desastres en America Latina, 1972–2010). Environment and development series No. 157. Santiago: The Economic Commission for Latin America and the Caribbean (ECLAC). http://repositorio.cepal.org/bitstream/handle/11362/37104/S2014127_es.pdf?sequence=1. Accessed 5 Nov 2017 (in Spanish).
    Chen, D., and H.W. Chen. 2013. Using the Köppen Classification to quantify climate variation and change: An example for 1901–2010. Environmental Development 6: 69–79.
    ECLAC (Economic Commission for Central America and the Caribbean). 2010. The economics of climate change in Central America: Summary 2010. http://repositorio.cepal.org/bitstream/handle/11362/35229/1/lcmexl978i.pdf. Accessed 19 Dec 2017.
    FAO (Food and Agriculture Organization). 2012. Study of the characterization of the Dry Corridor in Central America. Honduras: FAO. https://reliefweb.int/sites/reliefweb.int/files/resources/tomo_i_corredor_seco.pdf. Accessed 1 Oct 2017.
    FAO (Food and Agriculture Organization). 2016. El Niño: Preparedness and response situation report—July 2016. http://www.fao.org/resilience/resources/resources-detail/en/c/423055/. Accessed 5 Sept 2017.
    Glantz, M.H. 2015. Shades of chaos: Lessons learned about lessons learned about forecasting El Niño and its impacts. International Journal of Disaster Risk Science 6(1): 94–103.
    Glantz, M.H., L. Naranjo, M. Baudoin, and I.J. Ramírez. 2018. What does it mean to be El Niño Ready? Atmosphere 9(3): 94.
    Ha, K., S. Yoon, K. Yun, J. Kug., Y. Jang, and J.C.L. Chan. 2012. Dependency of typhoon intensity and génesis locations on El Niño phase and SST shift over the western North Pacific. Theoretical and Applied Climatology 109(3–4): 383–395.
    Hylke, E.B., N. Vergopolan, M. Pan, V. Levizzani, A.I.J.M. van Dijk, G. Weedon, L. Brocca, F. Pappenberger, G. Huffman, and E.F. Wood. 2017. Global-scale evaluation of 23 precipitation datasets using gauge observations and hydrological modeling. Hydrology and Earth System Sciences 21: 6201–6217.
    Lutgens, F.K., and E.J. Tarbuck. 2014. The atmosphere: An introduction to meteorology, 13th edn. New York: Pearson.
    Magaña, V., J.L. Pérez, J.L. Vázquez, E. Carrisoza, and J. Pérez. 1999. El Niño and climate (El Niño y el clima). In The impacts of El Niño in Mexico (Los impactos de El Niño en México), ed. R.V.O Magaña, 23–68. Mexico: Sep-CONACYT (in Spanish).
    McPhaden, M.J., S.E. Zebiak, and M.H. Glantz. 2006. ENSO as an integrating concept in earth science. Science 314: 1740–1745.
    NOAA (National Oceanic and Atmospheric Administration). 2017. Cold and warm episodes by season. http://origin.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/ONI_v5.php. Accessed 17 Aug 2017.
    Naranjo, L. 2000. Impact of extratropical cyclones in Cuba. In STORMS, ed. R. Pielke Jr. and R. Pielke Sr., 526–538. New York: Routledge Press.
    Peel, M.C., B.L. Finlayson, and T.A. McMahon. 2007. Updated world map of the Köppen–Geiger climate classification. Hydrology and Earth System Sciences 11(5): 1633–1644.
    Rojas, O., Y. Li, and R. Cumani. 2014. Understanding the drought impact of El Niño on the global agricultural areas: An assessment using FAO’s Agricultural Stress Index (ASI). Rome: Food and Agriculture Organization of the United Nations.
    Ropelewski, C., and M. Halpert. 1987. Global and regional scale precipitation patterns associated with the El Niño/Southern Oscillation. Monthly Weather Review 115: 1606–1626.
    Schiermeier, Q. 2015. Hunting the Godzilla El Niño. Nature 526: 490–491.
    Shi, P., S. Sun, D. Gong, and T. Zhou. 2016. World regionalization of climate change (1961–2010). International Journal of Disaster Risk Science 7(3): 216–226.
    Trenberth, K.E. 1997. The definition of El Niño. Bulletin of American Meteorological Society 78(12): 2771–2777.
    UNEP (United Nations Environmental Program). 2003. GEO Latin America and the Caribbean: Environment outlook 2003. Mexico: United Nations Environment Programme, Regional Office for Latin America and the Caribbean.
    UNOCHA (UN Office for the Coordination of Humanitarian Affairs). 2015. Guatemala/Honduras: 2016 humanitarian response plan (January–December 2016). http://reliefweb.int/report/guatemala/guatemala-honduras-2016-humanitarian-response-plan-january-december-2016. Accessed 10 Sept 2017.
    WHO (World Health Organization). 2016. El Niño and health, Central America—January 2016. http://www.who.int/hac/crises/el-Niño/who_el_Niño_and_health_global_report_central_america_21jan2016.pdf?ua=1. Accessed 10 Oct 2017.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (50) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return