Citation: | Andrew Deelstra, David Bristow. Characterizing Uncertainty in City-Wide Disaster Recovery through Geospatial Multi-Lifeline Restoration Modeling of Earthquake Impact in the District of North Vancouver[J]. International Journal of Disaster Risk Science, 2020, 11(6): 807-820. doi: 10.1007/s13753-020-00323-5 |
Applied Technology Council. 1985. ATC-13: Earthquake damage evaluation data for California. Redwood City, CA: Applied Technology Council.
|
Berke, P.R., J. Kartez, and D. Wenger. 1993. Recovery after disaster: Achieving sustainable development, mitigation and equity. Disasters 17(2): 93–109.
|
Bristow, D.N. 2019. How spatial and functional dependencies between operations and infrastructure leads to resilient recovery. Journal of Infrastructure Systems 25(2): Article 04019011.
|
Bristow, D.N., and Hay, A.H. 2017. Graph model for probabilistic resilience and recovery planning of multi-infrastructure systems. Journal of Infrastructure Systems 23(3): Article 04016039.
|
Cavdaroglu, B., E. Hammel, J.E. Mitchell, T.C. Sharkey, and W.A. Wallace. 2013. Integrating restoration and scheduling decisions for disrupted interdependent infrastructure systems. Annals of Operations Research 203(1): 279–294.
|
DNV (The District of North Vancouver). 2015. When the ground shakes: A plain language companion study. https://www.dnv.org/sites/default/files/edocs/when-the-ground-shakes.pdf. Accessed 22 Mar 2019.
|
Duffey, R.B. 2019. Power restoration prediction following extreme events and disasters. International Journal of Disaster Risk Science 10(1): 134–148.
|
FEMA (Federal Emergency Management Agency). 2011. Hazus—MH 2.1 earthquake model technical manual. Washington, DC: FEMA. https://www.fema.gov/media-library-data/20130726-1820-25045-6286/hzmh2_1_eq_tm.pdf. Accessed 3 Jan 2019.
|
Ganin, A.A., M. Kitsak, D. Marchese, J.M. Keisler, T. Seager, and I. Linkov. 2017. Resilience and efficiency in transportation networks. Science Advances 3(12): 1–9.
|
Haimes, Y.Y. 2009. On the complex definition of risk: A systems-based approach. Risk Analysis 29(12): 1647–1654.
|
He, F., and J. Nwafor. 2017. Gas pipeline recovery from disruption using multi-objective optimization. In Proceedings of 2017 IEEE International Symposium on Technologies for Homeland Security, 25–26 April 2017, Waltham, MA, USA, 378–383. Piscataway, NJ: Institute of Electrical and Electronics Engineers.
|
Henry, D., and J. Emmanuel Ramirez-Marquez. 2012. Generic metrics and quantitative approaches for system resilience as a function of time. Reliability Engineering and System Safety 99: 114–122.
|
Hu, X.B., M. Wang, T. Ye, and P. Shi. 2016. A new method for resource allocation optimization in disaster reduction and risk governance. International Journal of Disaster Risk Science 7(2): 138–150.
|
Journeay, J.M., F. Dercole, D. Mason, M. Westin, J.A. Prieto, C.L. Wagner, N.L. Hastings, S.E. Chang, et al. 2015. A profile of earthquake risk for the district of North Vancouver, British Columbia. Geological Survey of Canada, Open File 7677. http://ftp.geogratis.gc.ca/pub/nrcan_rncan/publications/ess_sst/296/296256/of_7677.pdf. Accessed 22 Mar 2019.
|
Khatavkar, P., and L.W. Mays. 2019. Optimization-simulation model for real-time pump and valve operation of water distribution systems under critical conditions. Urban Water Journal 16(1): 45–55.
|
Loggins, R.A., and W.A. Wallace. 2015. Rapid assessment of hurricane damage and disruption to interdependent civil infrastructure systems. Journal of Infrastructure Systems 21(4): Article 04015005.
|
Lubashevskiy, V., T. Kanno, and K. Furuta. 2014. Resource redistribution method for short-term recovery of society after large-scale disasters. Advances in Complex Systems 17(5): Article 1450026.
|
Miles, S.B. 2018. Participatory disaster recovery simulation modeling for community resilience planning. International Journal of Disaster Risk Science 9(4): 519–529.
|
Muriel-Villegas, J.E., K.C. Alvarez-Uribe, C.E. Patiño-Rodríguez, and J.G. Villegas. 2016. Analysis of transportation networks subject to natural hazards—Insights from a Colombian case. Reliability Engineering and System Safety 152: 151–165.
|
Nateghi, R. 2018. Multi-dimensional infrastructure resilience modeling: An application to hurricane-prone electric power distribution systems. IEEE Access 6: 13478–13489.
|
Onuma, H., K. Joo, and S. Managi. 2017. Household preparedness for natural disasters: Impact of disaster experience and implications for future disaster risks in Japan. International Journal of Disaster Risk Reduction 21: 148–158.
|
Ouyang, M. 2014. Review on modeling and simulation of interdependent critical infrastructure systems. Reliability Engineering and System Safety 121: 43–60.
|
Ouyang, M., and Z. Wang. 2015. Resilience assessment of interdependent infrastructure systems: With a focus on joint restoration modeling and analysis. Reliability Engineering and System Safety 141: 74–82.
|
Pagano, A., C. Sweetapple, R. Farmani, R. Giordano, and D. Butler. 2019. Water distribution networks resilience analysis: A comparison between graph theory-based approaches and global resilience analysis. Water Resources Management 33(8): 2925–2940.
|
Rodríguez, H., W. Donner, and J.E. Trainor (eds.). 2018. Handbooks of sociology and social research handbook of disaster research, 2nd edn. Switzerland: Springer International.
|
Rubin, C.B., M.D. Saperstein, and D.G. Barbee. 1985. Community recovery from a major natural disaster. Boulder, CO: Institute of Behavioral Science, University of Colorado.
|
Setola, R., V. Rosato, E. Kyriakides, and E. Rome (eds.). 2016. Managing the complexity of critical infrastructures: A modelling and simulation approach. Switzerland: Springer International.
|
Statistics Canada. 2017. North Vancouver, DM (Census Subdivision), British Columbia and Greater Vancouver, RD (Census Division), British Columbia (Table). Census profile. In 2016 Census. Statistics Canada Catalogue No. 98-316-X2016001. Ottawa: Statistics Canada.
|
Stergiopoulos, G., P. Kotzanikolaou, M. Theocharidou, G. Lykou, and D. Gritzalis. 2016. Time-based critical infrastructure dependency analysis for large-scale and cross-sectoral failures. International Journal of Critical Infrastructure Protection 12: 46–60.
|
Sullivan, J.L., D.C. Novak, L. Aultman-Hall, and D.M. Scott. 2010. Identifying critical road segments and measuring system-wide robustness in transportation networks with isolating links: A link-based capacity-reduction approach. Transportation Research Part A: Policy and Practice 44(5): 323–336.
|
Tran, H.T., M. Balchanos, J.C. Domerçant, and D.N. Mavris. 2017. A framework for the quantitative assessment of performance-based system resilience. Reliability Engineering and System Safety 158: 73–84.
|