Volume 12 Issue 3
Dec.  2021
Turn off MathJax
Article Contents
Yuanyuan Yin, Yuan Gao, Degen Lin, Lei Wang, Weidong Ma, Jing'ai Wang. Mapping the Global-Scale Maize Drought Risk Under Climate Change Based on the GEPIC-Vulnerability-Risk Model[J]. International Journal of Disaster Risk Science, 2021, 12(3): 428-442. doi: 10.1007/s13753-021-00349-3
Citation: Yuanyuan Yin, Yuan Gao, Degen Lin, Lei Wang, Weidong Ma, Jing'ai Wang. Mapping the Global-Scale Maize Drought Risk Under Climate Change Based on the GEPIC-Vulnerability-Risk Model[J]. International Journal of Disaster Risk Science, 2021, 12(3): 428-442. doi: 10.1007/s13753-021-00349-3

Mapping the Global-Scale Maize Drought Risk Under Climate Change Based on the GEPIC-Vulnerability-Risk Model

doi: 10.1007/s13753-021-00349-3
Funds:

This work was supported by the National Natural Science Foundation of China (Grant No. 41671501, 41901046, and 91747201). The bias-corrected and downscaled projection data of HadGEM2-ES were obtained from the Inter-Sectoral Impact Model Inter-comparison Project (ISI-MIP) Earth System Grid Federation (ESGF) Node (http://esg.pik-potsdam.de). We acknowledge the ISIMIP coordination team for the model outputs.

  • Available Online: 2021-12-25
  • Publish Date: 2021-12-25
  • Drought is projected to become more frequent and increasingly severe under climate change in many agriculturally important areas. However, few studies have assessed and mapped the future global crop drought risk—defined as the occurrence probability and likelihood of yield losses from drought—at high resolution. With support of the GEPIC-Vulnerability-Risk model, we propose an analytical framework to quantify and map the future global-scale maize drought risk at a 0.5° resolution. In this framework, the model can be calibrated and validated using datasets from in situ observations (for example, yield statistics, losses caused by drought) and the literature. Water stress and drought risk under climate change can then be simulated. To evaluate the applicability of the framework, a global-scale assessment of maize drought risk under 1.5 ℃ warming was conducted. At 1.5 ℃ warming, the maize drought risk is projected to be regionally variable (high in the midlatitudes and low in the tropics and subtropics), with only a minor negative (-0.93%) impact on global maize yield. The results are consistent with previous studies of drought impacts on maize yield of major agricultural countries around the world. Therefore, the framework can act as a practical tool for global-scale, future-oriented crop drought risk assessment, and the results provide theoretical support for adaptive planning strategies for drought.
  • loading
  • Alamgir, M., M. Mohsenipour, R. Homsi, X. Wang, S. Shahid, M. Shiru, N. Alias, and A. Yzir. 2019. Parametric assessment of seasonal drought risk to crop production in Bangladesh. Sustainability 11(5): Article 1442.
    Asseng, A., F. Ewert, P. Martre, R.P. Rötter, D.B. Lobell, D. Cammarano, B.A. Kimball, M.J. Ottman, et al. 2015. Rising temperatures reduce global wheat production. Nature Climate Change 5: 143-147.
    Batjes, N.H. (ed.). 2000. Global Soil Profile Data (ISRIC-WISE). ORNL Distributed Active Archive Center, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA. http://www.daac.ornl.gov. Accessed 9 Nov 2019.
    Bhargava, S., and S. Mitra. 2021. Elevated atmospheric CO2 and the future of crop plants. Plant Breeding 140(1): 1-11.
    Boote, K.J., J.W. Jones, and N. Pickering. 1996. Potential uses and limitations of crop models. Agronomy Journal 88(5): 704-716.
    Boote, K.J., J.W. Jones, J.W. White, S. Asseng, and J.I. Lizaso. 2013. Putting mechanisms into crop production models. Plant, Cell & Environment 36(9): 1658-1672.
    Cairns, J., J. Hellin, K. Sonder, J. Araus, J. MacRobert, C. Thierfelder, and B. Prasanna. 2013. Adapting maize production to climate change in sub-Saharan Africa. Food Security 5(3): 346-360.
    Cardona, O., M. van Aalst, J. Birkmann, M. Fordham, G. McGregor, R. Perez, R.S. Pulwarty, E.L.F. Schipper, et al. 2012. Determinants of risk: Exposure and vulnerability. In Managing the risks of extreme events and disasters to advance climate change adaptation, ed. C. Field, V. Barros, T. Stocker, D. Qin, D.J. Dokken, K.L. Ebi, M.D. Mastrandrea, K.J. Mach, et al., 65-108. Cambridge, UK: Cambridge University Press.
    Carrão, H., G. Naumann, and P. Barbosa. 2016. Mapping global patterns of drought risk: An empirical framework based on sub-national estimates of hazard, exposure and vulnerability. Global Environmental Change 39: 108-124.
    Chen, P., and Y. Liu. 2014. The impact of climate change on summer maize phenology in the northwest plain of Shandong province under the IPCC SRES A1B scenario. IOP Conference Series: Earth and Environmental Science 17(1): Article 012053.
    Cui, D. 1994. Agricultural climate and crop climate of the world. Hangzhou, China: Press of Zhejiang Science and Technology (in Chinese).
    Dai, A. 2013. Increasing drought under global warming in observations and models. Nature Climate Change 3: 52–58.
    Davis, J., and S. Uryasev. 2016. Analysis of tropical storm damage using buffered probability of exceedance. Natural Hazards 83(1): 465–483.
    Dike, V., M. Shimizu, M. Diallo, Z. Lin, O. Nwofor, and T. Chineke. 2015. Modelling present and future African climate using cmip5 scenarios in HadGEM2-ES. International Journal of Climatology 35(8): 1784–1799.
    Döll, P., and S. Siebert. 2002. Global modeling of irrigation water requirements. Water Resources Research 38(4): Article 1037.
    Elliott, J., C. Müller, D. Deryng, J. Chryssanthacopoulos, K.J. Boote, M. Büchner, I. Foster, M. Glotter, et al. 2015. The global gridded crop model intercomparison: Data and modeling protocols for Phase 1 (v1.0). Geosicentific Model Development 8: 261-277.
    FAO (Food and Agriculture Organization of the United Nations). 2015. The impact of natural hazards and disasters on agriculture and food security and nutrition: A call for action to build resilient livelihoods. http://www.fao.org/emergencies/resources/documents/resources-detail/en/c/280784/. Accessed 18 Apr 2021.
    Franke, J., C. Müller, J. Elliott, A. Ruane, J. Jägermeyr, J. Balkovic, P. Ciais, M. Dury, et al. 2020. The GGCMI Phase 2 experiment: Global gridded crop model simulations under uniform changes in CO2, temperature, water, and nitrogen levels (protocol version 1.0). Geosicentific Model Development 13: 2315-2336.
    Guo, H., X. Zhang, F. Lian, Y. Gao, D. Lin, and J. Wang. 2016. Drought risk assessment based on vulnerability surfaces: A case study of maize. Sustainability 8(8): Article 813.
    Hagenlocher, M., I. Meza, C. Anderson, A. Min, F.G. Renaud, Y. Walz, S. Siebert, and Z. Sebesvari. 2019. Drought vulnerability and risk assessments: State of the art, persistent gaps, and research agenda. Environmental Research Letters 14(8): Article 083002.
    Hartkamp, A., J. White, A. Aguilar, M. Bänziger, G. Srinivasan, G. Granados, and J. Crossa. 2001. Maize production environments revisited: A GIS-based approach. Mexico: CIMMYT Natural Resources Group.
    Hatfield, J.L., and C. Dold. 2018. Climate change impacts on corn phenology and productivity. In Corn—Production and human health in changing climate, ed. Amanullah and Shah Fahad, 95-114. London: IntechOpen.
    Hoegh-Guldberg, O., D. Jacbo, M. Taylor, M. Bindi, S. Brown, I. Camilloni, A. Diedhiou, R. Djalant, et al. 2018. Impacts of 1.5℃ global warming on natural and human systems. In Global warming of 1.5℃. An IPCC special report on the impacts of global warming of 1.5℃ above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty, ed. V. Masson-Delmotte, P. Zhai, H.-O. Pörtner, D. Roberts, J. Skea, P.R. Shukla, A. Pirani, W. Moufouma-Okia, et al., 175-311. Geneva: IPCC.
    Huang, C. 1997. Principle of information diffusion. Fuzzy Sets and Systems 91(1): 69-90.
    IPCC (Intergovernmental Panel on Climate Change). 2012. Managing the risks of extreme events and disasters to advance climate change adaptation. A special report of working groups I and Ⅱ of the Intergovernmental panel on climate change. Cambridge and New York: Cambridge University Press.
    IPCC (Intergovernmental Panel on Climate Change). 2013. Summary for policymakers. In Climate change 2013: The physical science basis. Contribution of Working Group I to the fifth assessment report of the Intergovernmental Panel on Climate Change. Cambridge and New York: Cambridge University Press.
    IPCC (Intergovernmental Panel on Climate Change). 2014. Climate change 2014: Synthesis report. Contribution of working groups I, Ⅱ and Ⅲ to the fifth assessment report of the Intergovernmental Panel on Climate Change, ed. Core writing team, R.K. Pachauri, L.A. Meye. Geneva: IPCC.
    Ji, Y., G. Zhou, Q. He, and L. Wang. 2018. The effect of climate change on spring maize (Zea mays L.) suitability across China. Sustainability 10(10): Article 3804.
    Khare, S., A. Bonazzi, C. Mitas, and S. Jewson. 2015. Modelling clustering of natural hazard phenomena and the effect on re/insurance loss perspectives. Natural Hazards and Earth System Sciences 15(6): 1357-1370.
    Kogo, B., L. Kumar, R. Koech, and C. Kariyawasam. 2019. Modelling climate suitability for rainfed maize cultivation in Kenya using a Maximum Entropy (MaxENT) approach. Agronomy 9(11): Article 727.
    Leng, G., and J. Hall. 2019. Crop yield sensitivity of global major agricultural countries to droughts and the projected changes in the future. Science of the Total Environment 654: 811-821.
    Leng, G., and J. Hall. 2020. Predicting spatial and temporal variability in crop yields: An inter-comparison of machine learning, regression and process-based models. Environmental Research Letters 15(4): Article 044027.
    Liu, J. 2009. A GIS-based tool for modeling large-scale crop-water relations. Environmental Modelling & Software 24(3): 411-422.
    Lu, J., G. Carbon, and J. Grego. 2019. Uncertainty and hotspots in 21st century projections of agricultural drought from CMIP5 models. Scientific Reports 9(1): Article 4922.
    Meza, I., S. Siebert, P. Döll, J. Kusche, C. Herbert, E.E. Rezaei, H. Nouri, and H. Gerdener et al. 2020. Global-scale drought risk assessment for agricultural systems. Natural Hazards and Earth System Sciences 20(2): 695–712.
    Orlowsky, B., and S.I. Seneviratne. 2013. Elusive drought: Uncertainty in observed trends and short- and long-term CMIP5 projections. Hydrology and Earth System Sciences 17: 1765-1781.
    Ottman, M. J., B.A. Kimball, P.J. Pinter, G.W. Wall, R.L. Vanderlip, S.W. Leavitt, R.L. LaMorte, A.D. Matthias, et al. 2001. Elevated CO2 increases sorghum biomass under drought conditions. New Phytologist 150(2): 261-273.
    Pan, D., H. Jia, W. Zhang, and Y. Yin. 2017. Research on maize drought vulnerability based on field experiments. Journal of Catastrophology 32(2): 150-153 (in Chinese).
    Poljanšek, K., M. Marin Ferrer, T. De Groeve, and I. Clark. 2017. Science for disaster risk management 2017: Knowing better and loosing less. EUR 28034 EN. Luxembourg: Publications Office of the European Union.
    Press, W.H., and S.A. Teukolsky. 1988. Kolmogorov-Smirnov test for two-dimensional data. Computers in Physics 2(4): 74-77.
    Ramankutty, N., A.T. Evan, C. Monfreda, and J.A. Foley. 2008. Farming the planet: 1. Geographic distribution of global agricultural lands in the year 2000. Global Biogeochemical Cycles 22: Article GB1003.
    Ramirez-Cabral, N., L. Kumar, and F. Shabani. 2017. Global alterations in areas of suitability for maize production from climate change and using a mechanistic species distribution model (CLIMEX). Scientific Reports 7: Article 5910.
    Rodríguez, A., M. Ruiz-Ramos, T. Palosuo, T.R. Carter, S. Fronzek, I.J. Lorite, R. Ferrise, N. Pirttioja, et al. 2019. Implications of crop model ensemble size and composition for estimates of adaptation effects and agreement of recommendations. Agricultural and Forest Meteorology 264: 351-362.
    Rosenzweig, C., N.W. Arnell, K.L. Ebi, H. Lotze-Campen, F. Raes, C. Rapley, M.S. Smith, W. Cramer, et al. 2017. Assessing inter-sectoral climate change risks: The role of ISIMIP. Environmental Research Letters 12(1): Article 010301.
    Schewe, J., J. Heinke, D. Gerten, I. Haddeland, N.W. Arnell, D.B. Clark, R. Dankers, S. Eisner, et al. 2014. Multimodel assessment of water scarcity under climate change. Proceedings of the National Academy of Sciences of the United States of America 111(9): 3245-3250.
    Schneiderbauer, S., E. Calliari, U. Eidsvig, and M. Hagenlocher. 2017. The most recent view of vulnerability. In Science for disaster risk management 2017: Knowing better and loosing less, ed. K. Poljanšek, M. Marín Ferrer, T. De Groeve, and I. Clark, 70-84. Luxembourg: Publications Office of the European Union.
    Shi, P. 2012. Atlas of natural disaster risk of China. Beijing, China: Science Press (in Chinese).
    Takim, F. 2017. Climate change adaptation options: Importance of drought tolerant maize seeds. UNU-INRA policy brief. Tokyo, Japan: Institute for Natural Resources in Africa, United Nations University.
    Taylor, I., E. Burke, L. McColl, P. Falloon, G. Harris, and D. McNeall. 2013. The impact of climate mitigation on projections of future drought. Hydrology and Earth System Sciences 17: 2339-2358.
    Thornley, J., and I. Johnson. 1990. Plant and crop modeling: A mathematical approach to plant and crop physiology. Oxford, UK: The Blackburn Press.
    UNDP (United Nations Development Programme). 2005. Reducing disaster risk: A challenge for development. New York: United Nations Development Programme.
    UNFCCC (United Nation Framework Convention on Climate Change). 2015. The Paris Agreement Summary. Climate focus client brief on the Paris Agreement Ⅲ 28 December 2015. Bonn, Germany: UNFCCC.
    UNISDR (United Nations International Strategy for Disaster Reduction). 2009. UNISDR terminology on disaster risk reduction (2009). Geneva, Switzerland: UNISDR.
    van Vuuren, D.P., J. Edmonds, M. Kainuma, K. Riahi, A. Thomson, K. Hibbard, G.C. Hurtt, T. Kram, et al. 2011. The representative concentration pathways: An overview. Climatic Change 109: 5-31.
    Vautard, R., A. Gobiet, S. Sobolowski, E. Kjellström, A. Stegehuis, P. Watkiss, T. Mendlik, O. Landgren, et al. 2014. The European climate under a 2℃ global warming. Environmental Research Letters 9(3): Article 034006.
    Wallach, D., P. Martre, B. Liu, S. Asseng, F. Ewert, P. J. Thorburn, M. van Ittersum, P. K. Aggarwal, et al. 2018. Multimodel ensembles improve predictions of crop-environment-management interactions. Global Change Biology 24(11): 5072-5083.
    Wang, J., X. Zhang, H. Guo, Y. Yin, F. Lian, and P. Shi. 2016. Drought risk assessment and mapping of major crops in the world. Beijing, China: Science Press (in Chinese).
    Wang, Q., J. Wu, T. Lei, B. He, Z. Wu, M. Liu, X. Mo, G. Geng, et al. 2014. Temporal-spatial characteristics of severe drought events and their impact on agriculture on a global scale. Quaternary International 349: 10-21.
    Wang, Y., D. Yan, J. Wang, Y. Ding, and X. Song. 2017. Effects of elevated CO2 and drought on plant physiology, soil carbon and soil enzyme activities. Pedosphere 27(5): 846-855.
    Wang, Z., F. He, W. Fang, and Y. Liao. 2013. Assessment of physical vulnerability to agricultural drought in China. Natural Hazards 67(2): 645-657.
    Warszawski, L., K. Frieler, V. Huber, F. Piontek, O. Serdeczny, and J. Schewe. 2014. The Inter-Sectoral Impact Model Intercomparison Projection (ISI-MIP): Project framework. Proceedings of the National Academy of Sciences of the United States of America 111(9): 3228-3232.
    Webber, H., F. Ewert, J.E. Olesen, C. Müller, S. Fronzek, A. C. Ruane, M. Bourgault, P. Martre, et al. 2018. Diverging importance of drought stress for maize and winter wheat in Europe. Nature Communication 9: Article 4249.
    Williams, J., C. Jones, J. Kiniry, and D. Spanel. 1989. The EPIC crop growth model. Transactions of the ASAE 32(2): 497-511.
    Wilson, D.R., R.C. Muchow, and C.J. Murgatroyd. 1995. Model analysis of temperature and solar radiation limitations to maize potential productivity in a cool climate. Field Crops Research 43(1): 1-18.
    Xu, X., J. Zheng, Q. Ge, E. Dai, and C. Liu. 2011. Drought risk assessment on regional agriculture: A case in Southwest China. Progress in Geography 30(7): 883-890.
    Yao, F., P. Qin, J. Zhang, E. Lin, and V. Boken. 2011. Uncertainties in assessing the effect of climate change on agriculture using model simulation and uncertainty processing methods. Chinese Science Bulletin 56: 729-737.
    Yin, Y., Q. Tang, and X. Liu. 2015. A multi-model analysis of change in potential yield of major crops in China under climate change. Earth System Dynamics 6(1): 45-59.
    Yin, Y., X. Zhang, D. Lin, H. Yu, J. Wang, and P. Shi. 2014. GEPIC-V-R model: A GIS-based tool for regional crop drought risk assessment. Agricultural Water Management 144: 107-119
    Yu, C., X. Huang, H. Chen, G. Huang, S. Ni, J.S. Wright, J. Hall, P. Ciais, et al. 2018. Assessing the impacts of extreme agricultural droughts in China under climate and socioeconomic changes. Earth’s Future 6(5): 689-703.
    Yue, Y., L. Wang, J. Li, and A. Zhu. 2018. An EPIC model-based wheat drought risk assessment using new climate scenarios in China. Climatic Change 147: 539-553.
    Zeng, J., R. Zhang, Y. Lin, X. Wu, J. Tang, P. Guo, J. Li, and Q. Wang. 2020. Drought frequency characteristics of China, 1981-2019, based on the vegetation health index. Climate Research 81: 131-147.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (528) PDF downloads(1) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return