Citation: | Jiting Tang, Saini Yang, Yimeng Liu, Kezhen Yao, Guofu Wang. Typhoon Risk Perception: A Case Study of Typhoon Lekima in China[J]. International Journal of Disaster Risk Science, 2022, 13(2): 261-274. doi: 10.1007/s13753-022-00405-6 |
Aak, A., A. Iar, and B. An. 2020. Gender-based approach for assessing risk perception in a multi-hazard environment:A study of high schools of Gilgit, Pakistan. International Journal of Disaster Risk Reduction 44:Article 101427.
|
Albrecht, R., J.B. Jarecki, D.S. Meier, and J. Rieskamp. 2021. Risk preferences and risk perception affect the acceptance of digital contact tracing. Humanities and Social Sciences Communications 8:Article 195.
|
Bao, X., L. Wu, S. Zhang, H. Yuan, and H. Wang. 2020. A comparison of convective raindrop size distributions in the eyewall and spiral rainbands of Typhoon Lekima (2019). Geophysical Research Letters 47(23):Article 2020GL090729.
|
Baranowski, D.B., M.K. Flatau, P.J. Flatau, D. Karnawati, K. Barabasz, M. Labuz, B. Latos, J.M. Schmidt, et al. 2020. Social-media and newspaper reports reveal large-scale meteorological drivers of floods on Sumatra. Nature Communications 11:Article 2503.
|
Blei, D.M., A.Y. Ng, and M.I. Jordan. 2003. Latent Dirichlet Allocation. Journal of Machine Learning Research 3:993-1022.
|
Butler, D. 2013. Crowdsourcing goes mainstream in typhoon response. Nature 2013(14186):2022.. Accessed 20 Feb 2022. Butler, D. 2013. Crowdsourcing goes mainstream in typhoon response. Nature 2013(14186):2022. https://doi.org/10.1038/nature.2013.14186. Accessed 20 Feb 2022.
|
Cai, W., B. Liu, Z. Wei, M. Li, and J. Kan. 2021. TARDB-Net:Triple-attention guided residual dense and BiLSTM networks for hyperspectral image classification. Multimedia Tools and Applications 80(7):11291-11312.
|
de Diego, I.M., A. Fernandez-Isabel, F. Ortega, and J.M. Moguerza. 2018. A visual framework for dynamic emotional web analysis. Knowledge-Based Systems 145:264-273.
|
Eyre, R., F.D. Luca, and F. Simini. 2020. Social media usage reveals recovery of small businesses after natural hazard events. Nature Communications 11:Article 1629.
|
Fan, C., F. Wu, and A. Mostafavi. 2020. A hybrid machine learning pipeline for automated mapping of events and locations from social media in disasters. IEEE Access 8(8):10478-10490.
|
Ginige, K., D.G. Amaratunga, and R. Haigh. 2009. Mainstreaming gender in disaster reduction:Why and how?. Disaster Prevention and Management 18(1):23-34.
|
Gotham, K.F., R. Campanella, K. Lauve-Moon, and B. Powers. 2018. Hazard experience, geophysical vulnerability, and flood risk perceptions in a postdisaster city, the case of New Orleans. Risk Analysis 38(2):345-356.
|
Harman, J.L., J.M. Weinhardt, J.W. Beck, and I. Mai. 2021. Interpreting time-series COVID data:Reasoning biases, risk perception, and support for public health measures. Scientific Reports 11(1):Article 15585.
|
Hochreiter, S., and J. Schmidhuber. 1997. Long short-term memory. Neural Computation 9(8):1735-1780.
|
Hu, Y., S. Gao, D. Lunga, W. Li, S. Newsam, and B. Bhaduri. 2019. GeoAI at ACM SIGSPATIAL:Progress, challenges, and future directions. ACM Sigspatial Special 11(2):5-15.
|
Ilieva, R.T., and T. Mcphearson. 2018. Social-media data for urban sustainability. Nature Sustainability 1(10):553-565.
|
Jelodar, H., Y. Wang, Y. Chi, F. Xia, X. Jiang, Y. Li, and L. Zhao. 2018. Latent Dirichlet Allocation (LDA) and topic modeling:Models, applications, a survey. Multimedia Tools and Applications 78(11):15169-15211.
|
Jia, J.Y., L.Y. Han, Y.F. Liu, N. He, Q. Zhang, X. Wan, Y.F. Zhang, and J.M. Hu. 2016. Drought risk analysis of maize under climate change based on natural disaster system theory in Southwest China. Acta Ecologica Sinica 36(5):340-349.
|
Khare, A., Q. He, and R. Batta. 2020. Predicting gasoline shortage during disasters using social media. OR Spectrum 42(3):693-726.
|
Kryvasheyeu, Y., H. Chen, N. Obradovich, E. Moro, and P.V. Hentenryck. 2016. Rapid assessment of disaster damage using social media activity. Science Advances 2(3):Article e1500779.
|
Lee, T.M., E.M. Markowitz, P.D. Howe, C.-Y. Ko, and A.A. Leiserowitz. 2015. Predictors of public climate change awareness and risk perception around the world. Nature Climate Change 5:1014-1020.
|
Li, Z., Q. Li, X. Zou, and J. Ren. 2021. Causality extraction based on self-attentive BiLSTM-CRF with transferred embeddings. ScienceDirect 423:207-219.
|
Ma, Y., D. Yu, T. Wu, and H. Wang. 2019. PaddlePaddle:An open-source deep learning platform from industrial practice. Frontiers of Data and Computing 1(1):105-115.
|
Macias, T. 2016. Environmental risk perception among race and ethnic groups in the United States. Ethnicities 16(1):111-129.
|
Marshall, M. 2019. Mystery of deadly Indonesian tsunami cracked using social-media videos. Nature 569(7757):463-464.
|
Onan, A., S. Korukoglu, and H. Bulut. 2016. Ensemble of keyword extraction methods and classifiers in text classification. Expert Systems with Applications 57(9):232-247.
|
Rahmanti, A.R., D.N.A. Ningrum, L. Lazuardi, H.C. Yang, and Y.C.J Li. 2021. Social media data analytics for outbreak risk communication:Public attention on the "new normal" during the COVID-19 pandemic in Indonesia. Computer Methods and Programs in Biomedicine 205:Article 106083.
|
Sagcan, M., and P. Senkul. 2015. Toponym recognition in social media for estimating the location of events. 2015 IEEE International Conference on Data Mining Workshop (ICDMW), 14-17 November 2015, Atlantic City, NJ, USA, 33-39.
|
Shi, P. 1991. On the theory of disaster research and its practice. Journal of Nanjing University Natural Science 11:37-42 (in Chinese).
|
Shi, P. 1996. Theory and practice of disaster study. Journal of Natural Disasters 5(4):6-17 (in Chinese).
|
Shi, P. 2002. Theory on disaster science and disaster dynamics. Journal of Natural Disasters 11(3):1-9 (in Chinese).
|
Shi, P. 2005. Theory and practice on disaster system research on a fourth time. Journal of Natural Disasters 14(6):1-7 (in Chinese).
|
Shi, P. 2009. Theory and practice on disaster system research on a fifth time. Journal of Natural Disasters 18(5):1-9 (in Chinese).
|
Siami-Namini, S., N. Tavakoli, and A.S. Namin. 2019. The performance of LSTM and BiLSTM in forecasting time series. In Proceedings of 2019 IEEE International Conference on Big Data, 9-12 December 2019, Los Angeles, CA, USA, 3285-3292.
|
Tang, J., S. Yang, and W. Wang. 2021. Social media-based disaster research:Development, trends, and obstacles. International Journal of Disaster Risk Reduction 55:Article 102095.
|
UNDRR (United Nations Office for Disaster Risk Reduction). 2020. 2019 global natural disaster assessment report. https://www.preventionweb.net/files/73363_2019globalnaturaldisasterassessment.pdf. Accessed 10 Jan 2022.
|
Ushiyama, M., A. Yoshida, N. Kashiwagi, S. Sato, and Y. Sato. 2009. Analysis of the effects of disaster workshop for non-residents on the participants. Journal of Japan Society for Natural Disaster Science 27(4):375-385.
|
Wang, B., B.P.Y. Loo, F. Zhen, and G. Xi. 2020. Urban resilience from the lens of social media data:Responses to urban flooding in Nanjing, China. Cities 106:Article 102884.
|
Xiao, Y., Q. Huang, and C. Zhang. 2018. Research on urban disaster analysis based on the big data mining of social media:Case study of Hurricane Sandy in New York. Urban Planning International 33(4):84-92.
|
Yang, P., X. Huang, L. Peng, Z. Zheng, X. Wu, and C. Xing. 2020. Safety evaluation of major hazard installations based on regional disaster system theory. Journal of Loss Prevention in The Process Industries 69:Article 104346.
|
Yao, K., S. Yang, and J. Tang. 2021. Rapid assessment of seismic intensity based on Sina Weibo-A case study of the changning earthquake in Sichuan Province, China. International Journal of Disaster Risk Reduction 58:Article 102217.
|
Zhang, L., W. Ai, and X. Luo. 2020. Research on communication of network information under meteorological disaster:Case of typhoon. Journal of the Meteorological Sciences 40(6):868-874.
|
Zhao, X., M.M. Zhan, and B.F. Liu. 2019. Understanding motivated publics during disasters:Examining message functions, frames, and styles of social media influentials and followers. Journal of Contingencies and Crisis Management 27(4):387-399.
|
Zheng, S., J. Wang, C. Sun, X. Zhang, and E.K. Matthew. 2019. Air pollution lowers Chinese urbanites' expressed happiness on social media. Nature Human Behaviour 3(3):237-243.
|