Citation: | Yaoxing Liao, Zhaoli Wang, Chengguang Lai, Chong-Yu Xu. A Framework on Fast Mapping of Urban Flood Based on a Multi-Objective Random Forest Model[J]. International Journal of Disaster Risk Science, 2023, 14(2): 253-268. doi: 10.1007/s13753-023-00481-2 |
[1] |
Adhaityar, B.Y., D.P. Sahara, C. Pratama, A. Wibowo, and L.S. Heliani. 2021. Multi-target regression using Convolutional Neural Network-Random Forests (CNN-RF) for early earthquake warning system. Paper presented at the 9th International Conference on Information and Communication Technology (ICoICT), 3-5 August 2021, Yogyakarta, Indonesia.
|
[2] |
Bentivoglio, R., E. Isufi, S.N. Jonkman, and R. Taormina. 2022. Deep learning methods for flood mapping:A review of existing applications and future research directions. Hydrology and Earth System Sciences 26(16):4345-4378.
|
[3] |
Berkhahn, S., L. Fuchs, and I. Neuweiler. 2019. An ensemble neural network model for real-time prediction of urban floods. Journal of Hydrology 575:743-754.
|
[4] |
Bermúdez, M., L. Cea, and J. Puertas. 2019. A rapid flood inundation model for hazard mapping based on least squares support vector machine regression. Journal of Flood Risk Management 12(1):1-14.
|
[5] |
Bhola, P.K., J. Leandro, and M. Disse. 2018. Framework for offline flood inundation forecasts for two-dimensional hydrodynamic models. Geosciences 8(9):Article 346.
|
[6] |
Borchani, H., G. Varando, C. Bielza, and P. Larrañaga. 2015. A survey on multi-output regression. WIREs Data Mining and Knowledge Discovery 5(5):216-233.
|
[7] |
Breiman, L. 2001. Random forests. Machine Learning 45(1):5-32.
|
[8] |
Brunton, S.L., B.R. Noack, and P. Koumoutsakos. 2019. Machine learning for fluid mechanics. Annual Review of Fluid Mechanics 52:477-508.
|
[9] |
Chen, W., G. Huang, and H. Zhang. 2017. Urban stormwater inundation simulation based on SWMM and diffusive overland-flow model. Water Science & Technology 76(12):3392-3403.
|
[10] |
Chen, W., G. Huang, H. Zhang, and W. Wang. 2018. Urban inundation response to rainstorm patterns with a coupled hydrodynamic model:A case study in Haidian Island, China. Journal of Hydrology 564:1022-1035.
|
[11] |
Chu, H., W. Wu, Q.J. Wang, R. Nathan, and J. Wei. 2020. An ANN-based emulation modelling framework for flood inundation modelling:Application, challenges and future directions. Environmental Modelling & Software 124:Article 104587.
|
[12] |
Coulthard, T.J., J.C. Neal, P.D. Bates, J. Ramirez, G.A.M. de Almeida, and G.R. Hancock. 2013. Integrating the LISFLOOD-FP 2D hydrodynamic model with the CAESAR model:Implications for modelling landscape evolution. Earth Surface Processes and Landforms 38(15):1897-1906.
|
[13] |
De'ath, G. 2002. Multivariate regression trees:A new technique for modeling species-environment relationships. Ecology 83(4):1105-1117.
|
[14] |
Deng, Z., Z. Wang, X. Wu, C. Lai, and Z. Zeng. 2022. Strengthened tropical cyclones and higher flood risk under compound effect of climate change and urbanization across China's Greater Bay Area. Urban Climate 44:Article 101224.
|
[15] |
Dottori, F., and E. Todini. 2011. Developments of a flood inundation model based on the cellular automata approach:Testing different methods to improve model performance. Physics and Chemistry of the Earth, Parts A/B/C 36(7):266-280.
|
[16] |
Guidolin, M., A.S. Chen, B. Ghimire, E.C. Keedwell, S. Djordjević, and D.A. Savić. 2016. A weighted cellular automata 2D inundation model for rapid flood analysis. Environmental Modelling & Software 84:378-394.
|
[17] |
He, S., Z. Wang, D. Wang, W. Liao, X. Wu, and C. Lai. 2022. Spatiotemporal variability of event-based rainstorm:The perspective of rainfall pattern and concentration. International Journal of Climatology 42(12):6258-6276.
|
[18] |
Hou, J., N. Zhou, G. Chen, M. Huang, and G. Bai. 2021. Rapid forecasting of urban flood inundation using multiple machine learning models. Natural Hazards 108(2):2335-2356.
|
[19] |
IPCC (Intergovernmental Panel on Climate Change). 2021. Climate change 2021:The physical science basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, ed. V. Masson-Delmotte, P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, et al. Cambridge, UK and New York, USA:Cambridge University Press.
|
[20] |
Jhong, B.-C., J.-H. Wang, and G.-F. Lin. 2017. An integrated two-stage support vector machine approach to forecast inundation maps during typhoons. Journal of Hydrology 547:236-252.
|
[21] |
Jian, W., S. Li, C. Lai, Z. Wang, X. Cheng, E.Y.-M. Lo, and T.-C. Pan. 2021. Evaluating pluvial flood hazard for highly urbanised cities:A case study of the Pearl River Delta Region in China. Natural Hazards 105(2):1691-1719.
|
[22] |
Kabir, S., S. Patidar, X. Xia, Q. Liang, J. Neal, and G. Pender. 2020. A deep convolutional neural network model for rapid prediction of fluvial flood inundation. Journal of Hydrology 590:Article 125481.
|
[23] |
Keifer, C.J., and H.H. Chu. 1957. Synthetic storm pattern for drainage design. Journal of the Hydraulics Division 83(4):1332-1-1332-25.
|
[24] |
Kim, J., and H. Cho. 2019. Scenario-based urban flood forecast with flood inundation map. Tropical Cyclone Research and Review 8(1):27-34.
|
[25] |
Kocev, D., C. Vens, J. Struyf, and S. Džeroski. 2007. Ensembles of multi-objective decision trees. In Machine learning:ECML 2007, ed. J.N. Kok, J. Koronacki, R.L. de Mantaras, S. Matwin, D. Mladenič, and A. Skowron, 624-631. Berlin and Heidelberg:Springer.
|
[26] |
Kocev, D., S. Džeroski, M.D. White, G.R. Newell, and P. Griffioen. 2009. Using single- and multi-target regression trees and ensembles to model a compound index of vegetation condition. Ecological Modelling 220(8):1159-1168.
|
[27] |
Lai, C., Q. Shao, X. Chen, Z. Wang, X. Zhou, B. Yang, and L. Zhang. 2016. Flood risk zoning using a rule mining based on ant colony algorithm. Journal of Hydrology 542:268-280.
|
[28] |
Lai, C., X. Chen, Z. Wang, H. Yu, and X. Bai. 2020. Flood risk assessment and regionalization from past and future perspectives at basin scale. Risk Analysis 40(7):1399-1417.
|
[29] |
Li, S., Z. Wang, C. Lai, and G. Lin. 2020. Quantitative assessment of the relative impacts of climate change and human activity on flood susceptibility based on a cloud model. Journal of Hydrology 588:Article 125051.
|
[30] |
Li, S., Z. Wang, X. Wu, Z. Zeng, P. Shen, and C. Lai. 2022. A novel spatial optimization approach for the cost-effectiveness improvement of LID practices based on SWMM-FTC. Journal of Environmental Management 307:Article 114574.
|
[31] |
Liao, Y., Z. Wang, J. Xiong, and C. Lai. 2021. Dimming in the Pearl River Delta of China and the major influencing factors. Climate Research 82:161-176.
|
[32] |
Liaw, A., and M. Wiener. 2002. Classification and regression by randomForest. R News 2(3):18-22.
|
[33] |
Lin, G.-F., H.-Y. Lin, and Y.-C. Chou. 2013. Development of a real-time regional-inundation forecasting model for the inundation warning system. Journal of Hydroinformatics 15(4):1391-1407.
|
[34] |
Lin, Q., J. Leandro, S. Gerber, and M. Disse. 2020. Multistep flood inundation forecasts with resilient backpropagation neural networks:Kulmbach case study. Water 12(12):Article 3568.
|
[35] |
Lin, Y., D. Wang, G. Wang, J. Qiu, K. Long, Y. Du, H. Xie, Z. Wei, et al. 2021. A hybrid deep learning algorithm and its application to streamflow prediction. Journal of Hydrology 601:Article 126636.
|
[36] |
Ling, F., J.-J. Luo, Y. Li, T. Tang, L. Bai, W. Ouyang, and T. Yamagata. 2022. Multi-task machine learning improves multi-seasonal prediction of the Indian Ocean Dipole. Nature Communications 13(1):Article 7681.
|
[37] |
Liu, W., D. Xu, I.W. Tsang, and W. Zhang. 2019. Metric learning for multi-output tasks. IEEE Transactions on Pattern Analysis and Machine Intelligence 41(2):408-422.
|
[38] |
McGrath, H., J.-F. Bourgon, J.-S. Proulx-Bourque, M. Nastev, and A.A.E. Ezz. 2018. A comparison of simplified conceptual models for rapid web-based flood inundation mapping. Natural Hazards 93(2):905-920.
|
[39] |
Molokov, M.B., and ΓΓ Shtigorin. 1956. The rain water and confluent channel. Beijing:Architectural Engineering Press (in Chinese).
|
[40] |
Nakano, F.K., K. Pliakos, and C. Vens. 2022. Deep tree-ensembles for multi-output prediction. Pattern Recognition 121:Article 108211.
|
[41] |
Nash, J.E., and J.V. Sutcliffe. 1970. River flow forecasting through conceptual models part I-A discussion of principles. Journal of Hydrology 10(3):282-290.
|
[42] |
Pan, C., X. Wang, L. Liu, H. Huang, and D. Wang. 2017. Improvement to the Huff Curve for design storms and urban flooding simulations in Guangzhou, China. Water 9(6):Article 411.
|
[43] |
Rossman, L.A. 2015. Storm water management model user's manual version 5.1. Washington, DC:United States Environmental Protection Agency (USEPA).
|
[44] |
Saha, D., P. Alluri, and A. Gan. 2016. A random forests approach to prioritize Highway Safety Manual (HSM) variables for data collection:Random forests to prioritize HSM variables. Journal of Advanced Transportation 50(4):522-540.
|
[45] |
Schulz, A., J. Kiesel, H. Kling, M. Preishuber, and G. Petersen. 2015. An online system for rapid and simultaneous flood mapping scenario simulations-The Zambezi FloodDSS. In Proceedings of EGU General Assembly 2015, 12-17 April 2015, Vienna, Austria.
|
[46] |
Shih, Y.-S., and H.-W. Tsai. 2004. Variable selection bias in regression trees with constant fits. Computational Statistics & Data Analysis 45(3):595-607.
|
[47] |
Struyf, J., and S. Džeroski. 2006. Constraint based induction of multi-objective regression trees. In Knowledge discovery in inductive databases, ed. F. Bonchi, and J.-F. Boulicaut, 222-233. Berlin and Heidelberg:Springer.
|
[48] |
Tellman, B., J.A. Sullivan, C. Kuhn, A.J. Kettner, C.S. Doyle, G.R. Brakenridge, T.A. Erickson, and D.A. Slayback. 2021. Satellite imaging reveals increased proportion of population exposed to floods. Nature 596(7870):80-86.
|
[49] |
Teng, J., J. Vaze, S. Kim, D. Dutta, A.J. Jakeman, and B.F.W. Croke. 2019. Enhancing the capability of a simple, computationally efficient, conceptual flood inundation model in hydrologically complex terrain. Water Resources Management 33(2):831-845.
|
[50] |
Wang, Z., C. Lai, X. Chen, B. Yang, S. Zhao, and X. Bai. 2015. Flood hazard risk assessment model based on random forest. Journal of Hydrology 527:1130-1141.
|
[51] |
Wang, W., W. Chen, and G. Huang. 2021. Urban stormwater modeling with local inertial approximation form of shallow water equations:A comparative study. International Journal of Disaster Risk Science 12(5):745-763.
|
[52] |
Wang, Z., S. Li, X. Wu, G. Lin, and C. Lai. 2022. Impact of spatial discretization resolution on the hydrological performance of layout optimization of LID practices. Journal of Hydrology 612:Article 128113.
|
[53] |
Wu, X., Z. Wang, S. Guo, W. Liao, Z. Zeng, and X. Chen. 2017. Scenario-based projections of future urban inundation within a coupled hydrodynamic model framework:A case study in Dongguan City, China. Journal of Hydrology 547:428-442.
|
[54] |
Wu, X., Z. Wang, S. Guo, C. Lai, and X. Chen. 2018. A simplified approach for flood modeling in urban environments. Hydrology Research 49(6):1804-1816.
|
[55] |
Xiong, J., Z. Wang, C. Lai, Y. Liao, and X. Wu. 2020. Spatiotemporal variability of sunshine duration and influential climatic factors in mainland China during 1959-2017. International Journal of Climatology 40(15):6282-6300.
|
[56] |
Xu, D., Y. Shi, I.W. Tsang, Y.-S. Ong, C. Gong, and X. Shen. 2020. Survey on multi-output learning. IEEE Transaction on Neural Networks and Learning Systems 31(7):2409-2429.
|
[57] |
Xu, T., and F. Liang. 2021. Machine learning for hydrologic sciences:An introductory overview. Wiley Interdisciplinary Reviews-Water 8(5):Article e1533.
|
[58] |
Xue, L., Y. Liu, Y. Xiong, Y. Liu, X. Cui, and G. Lei. 2021. A data-driven shale gas production forecasting method based on the multi-objective random forest regression. Journal of Petroleum Science & Engineering 196:Article 107801.
|
[59] |
Zeng, Z., Z. Wang, and C. Lai. 2022. Simulation performance evaluation and uncertainty analysis on a coupled inundation model combining SWMM and WCA2D. International Journal of Disaster Risk Science 13(4):448-464.
|
[60] |
Zhang, M., M. Xu, Z. Wang, and C. Lai. 2021. Assessment of the vulnerability of road networks to urban waterlogging based on a coupled hydrodynamic model. Journal of Hydrology 603:Article 127105.
|
[61] |
Zounemat-Kermani, M., O. Batelaan, M. Fadaee, and R. Hinkelmann. 2021. Ensemble machine learning paradigms in hydrology:A review. Journal of Hydrology 598:Article 126266.
|