Citation: | Hui Yang, Peijun Shi, Duncan Quincey, Wenwen Qi, Wentao Yang. A Heterogeneous Sampling Strategy to Model Earthquake-Triggered Landslides[J]. International Journal of Disaster Risk Science, 2023, 14(4): 636-648. doi: 10.1007/s13753-023-00489-8 |
[1] |
Allstadt, K.E., R.W. Jibson, E.M. Thompson, C.I. Massey, D.J. Wald, J.W. Godt, and F.K. Rengers. 2018. Improving near-real-time coseismic landslide models:Lessons learned from the 2016 Kaikōura, New Zealand, Earthquake. Bulletin of the Seismological Society of America 108(3B):1649-1664.
|
[2] |
Breiman, L. 2001. Random forests. Machine Learning 45:5-32.
|
[3] |
Bui, D.T., P. Tsangaratos, V.T. Nguyen, N.V. Liem, and P.T. Trinh. 2020. Comparing the prediction performance of a deep learning neural network model with conventional machine learning models in landslide susceptibility assessment. CATENA 188:104426.
|
[4] |
Cao, Z. 2014. Study on optimization of random forests algorithm. Ph.D. dissertation. Capital University of Economics and Business, Beijing, China (in Chinese).
|
[5] |
Catani, F., D. Lagomarsino, S. Segoni, and V. Tofani. 2013. Landslide susceptibility estimation by random forests technique:Sensitivity and scaling issues. Natural Hazards and Earth System Sciences 13(11):2815-2831.
|
[6] |
Chen, W., S. Zhang, R. Li, and H. Shahabi. 2018. Performance evaluation of the GIS-based data mining techniques of best-first decision tree, random forest, and naïve Bayes tree for landslide susceptibility modeling. Science of the Total Environment 644:1006-1018.
|
[7] |
Cheng, Y., T.T. Yu, and N.T. Son. 2021. Random forests for landslide prediction in Tsengwen river watershed central Taiwan. Remote Sensing 13(2):199.
|
[8] |
Cui, P., Y. Lin, and C. Chen. 2012. Destruction of vegetation due to geo-hazards and its environmental impacts in the Wenchuan earthquake areas. Ecological Engineering 44:61-69.
|
[9] |
Emberson, R., N. Hovius, A. Galy, and O. Marc. 2016. Chemical weathering in active mountain belts controlled by stochastic bedrock landsliding. Nature Geoscience 9(1):42-45.
|
[10] |
Fell, R., J. Corominas, C. Bonnard, L. Cascini, E. Leroi, and W.Z. Savage. 2008. Guidelines for landslide susceptibility, hazard and risk zoning for land use planning. Engineering Geology 102(3-4):85-98.
|
[11] |
Ham, J., Y. Chen, M.M. Crawford, and J. Ghosh. 2005. Investigation of the random forest framework for classification of hyperspectral data. IEEE Transactions on Geoscience and Remote Sensing 43(3):492-501.
|
[12] |
He, X. 2008. Multivariate statistical analysis. Beijing:People's University of China Press.
|
[13] |
He, Q., M. Wang, and K. Liu. 2021. Rapidly assessing earthquake-induced landslide susceptibility on a global scale using random forest. Geomorphology 391:107889.
|
[14] |
Hong, H., P. Tsangaratos, I. Ilia, W. Chen, and C. Xu. 2017. Comparing the performance of a Logistic Regression and a Random Forest Model in landslide susceptibility assessments The case of Wuyaun Area, China. In Advancing culture of living with landslides, ed. M. Mikos, B. Tiwari, Y. Yin, and K. Sassa, 1043-1050. Cham, Switzerland:Springer.
|
[15] |
Hu, W., R. Huang, M. McSaveney, L. Yao, Q. Xu, M. Feng, and X. Zhang. 2019. Superheated steam, hot CO2 and dynamic recrystallization from frictional heat jointly lubricated a giant landslide:Field and experimental evidence. Earth and Planetary Science Letters 510:85-93.
|
[16] |
Huang, R., and X. Fan. 2013. The landslide story. Nature Geoscience 6(5):325-326.
|
[17] |
Jibson, R.W., E.L. Harp, and J.A. Michael. 2000. A method for producing digital probabilistic seismic landslide hazard maps. Engineering Geology 58(3-4):271-289.
|
[18] |
Johnston, E.C., F.V. Davenport, L. Wang, J.K. Caers, S. Muthukrishnan, M. Burke, and N.S. Diffenbaugh. 2021. Quantifying the effect of precipitation on landslide hazard in urbanized and non-urbanized areas. Geophysical Research Letters. https://doi.org/10.1029/2021GL094038.
|
[19] |
Jones, J.N., S.J. Boulton, G.L. Bennett, M. Stokes, and M.R. Whitworth. 2021. Temporal variations in landslide distributions following extreme events:Implications for landslide susceptibility modeling. Journal of Geophysical Research Earth Surface. https://doi.org/10.1029/2021JF006067.
|
[20] |
Kirschbaum, D., T. Stanley, and Y. Zhou. 2015. Spatial and temporal analysis of a global landslide catalog. Geomorphology 249:4-15.
|
[21] |
Larsen, I.J., and D.R. Montgomery. 2012. Landslide erosion coupled to tectonics and river incision. Nature Geoscience 5(7):468-473.
|
[22] |
Liao, M., H. Wen, and L. Yang. 2022. Identifying the essential conditioning factors of landslide susceptibility models under different grid resolutions using hybrid machine learning:A case of Wushan and Wuxi counties China. Catena. https://doi.org/10.1016/j.catena.2022.106428.
|
[23] |
Liu, M., J. Liu, S. Xu, T. Zhou, Y. Ma, F. Zhang, and M. Konečný. 2021. Landslide susceptibility mapping with the fusion of multi-feature SVM model based FCM sampling strategy:A case study from Shaanxi Province. International Journal of Image and Data Fusion 12(4):349-366.
|
[24] |
Lombardo, L., H. Bakka, H. Tanyas, C. van Westen, P.M. Mai, and R. Huser. 2019. Geostatistical modeling to capture seismic-shaking patterns from earthquake-induced landslides. Journal of Geophysical Research:Earth Surface 124:1958-1980.
|
[25] |
Marteau, P.F. 2021. Random partitioning forest for point-wise and collective anomaly detection-Application to network intrusion detection. IEEE Transactions on Information Forensics and Security 16:2157-2172.
|
[26] |
Micheletti, N., L. Foresti, S. Robert, M. Leuenberger, A. Pedrazzini, M. Jaboyedoff, and M. Kanevski. 2013. Machine learning feature selection methods for landslide susceptibility mapping. Mathematical Geosciences 46(1):33-57.
|
[27] |
Nowicki Jessee, M.A., M.W. Hamburger, K. Allstadt, D.J. Wald, S.M. Robeson, H. Tanyas, M. Hearne, and E.M. Thompson. 2018. A global empirical model for near-real-time assessment of seismically induced landslides. Journal of Geophysical Research:Earth Surface 123:1835-1859.
|
[28] |
Nowicki, M.A., D.J. Wald, M.W. Hamburger, M. Hearne, and E.M. Thompson. 2014. Development of a globally applicable model for near real-time prediction of seismically induced landslides. Engineering Geology 173:54-65.
|
[29] |
Petley, D. 2012. Global patterns of loss of life from landslides. Geology 40(10):927-930.
|
[30] |
Pokharel, B., O.F. Althuwaynee, A. Aydda, S.W. Kim, S. Lim, and H.J. Park. 2021. Spatial clustering and modelling for landslide susceptibility mapping in the north of the Kathmandu Valley, Nepal. Landslides 18(4):1403-1419.
|
[31] |
Qi, W., C. Xu, and X. Xu. 2021. AutoGluon:A revolutionary framework for landslide hazard analysis. Natural Hazards Research 1(3):103-108.
|
[32] |
Shao, X., S. Ma, C. Xu, and Q. Zhou. 2020. Effects of sampling intensity and non-slide/slide sample ratio on the occurrence probability of coseismic landslides. Geomorphology. https://doi.org/10.1016/j.geomorph.2020.107222.
|
[33] |
Shu, H., M. Hürlimann, R. Molowny-Horas, M. González, J. Pinyol, C. Abancó, and J. Ma. 2019. Relation between land cover and landslide susceptibility in Val d'Aran, Pyrenees (Spain):Historical aspects, present situation and forward prediction. Science of the Total Environment 693:Article 133557
|
[34] |
Tanyas, H., T. Görüm, D. Kirschbaum, and L. Lombardo. 2022. Could road constructions be more hazardous than an earthquake in terms of mass movement?. Natural Hazards 112:639-663.
|
[35] |
Tanyas, H., M. Rossi, M. Alvioli, C.J. van Westen, and I. Marchesini. 2019. A global slope unit-based method for the near real-time prediction of earthquake-induced landslides. Geomorphology 327:126-146.
|
[36] |
van Westen, C.J., E. Castellanos, and S.L. Kuriakose. 2008. Spatial data for landslide susceptibility, hazard, and vulnerability assessment:An overview. Engineering Geology 102:112-131.
|
[37] |
van Westen, C.J., T.W.J. van Asch, and R. Soeters. 2006. Landslide hazard and risk zonation-Why is it still so difficult?. Bulletin of Engineering Geology and the Environment 65:167-184.
|
[38] |
Wang, W., Z. He, Z. Han, Y. Li, J. Dou, and J. Huang. 2020. Mapping the susceptibility to landslides based on the deep belief network:A case study in Sichuan Province, China. Natural Hazards 103:3239-3261.
|
[39] |
Xu, C., X. Xu, F. Dai, and A.K. Saraf. 2012. Comparison of different models for susceptibility mapping of earthquake triggered landslides related with the 2008 Wenchuan earthquake in China. Computers & Geosciences 46:317-329.
|
[40] |
Xu, C., X. Xu, X. Yao, and F. Dai. 2014. Three (nearly) complete inventories of landslides triggered by the May 12, 2008 Wenchuan Mw 7.9 earthquake of China and their spatial distribution statistical analysis. Landslides 11:441-461.
|
[41] |
Yang, C., L.-L. Liu, F. Huang, L. Huang, and X.-M. Wang. 2022. Machine learning-based landslide susceptibility assessment with optimized ratio of landslide to non-landslide samples. Gondwana Research. https://doi.org/10.1016/j.gr.2022.05.012.
|
[42] |
Ye, T., C. Huang, and Z. Deng. 2017. Spatial database of the 1:2,500,000 digital geologic map of the People's Republic of China. Geology in China 44(S1):19-24 (in Chinese).
|
[43] |
Yin, Y., F. Wang, and P. Sun. 2009. Landslide hazards triggered by the 2008 Wenchuan earthquake, Sichuan. China. Landslides 6(2):139-152.
|
[44] |
Youssef, A.M., H.R. Pourghasemi, Z.S. Pourtaghi, and M.M. Al-Katheeri. 2015. Landslide susceptibility mapping using random forest, boosted regression tree, classification and regression tree, and general linear models and comparison of their performance at Wadi Tayyah Basin, Asir Region. Saudi Arabia. Landslides 13(5):839-856.
|