Citation: | Fujun Niu, Chenglong Jiao, Jing Luo, Junlin He, Peifeng He. Three-Dimensional Numerical Modeling of Ground Ice Ablation in a Retrogressive Thaw Slump and Its Hydrological Ecosystem Response on the Qinghai-Tibet Plateau, China[J]. International Journal of Disaster Risk Science, 2023, 14(4): 566-585. doi: 10.1007/s13753-023-00503-z |
[1] |
Burn, C.R. 1983. Investigations of thermokarst development and climatic change in the Yukon Territory. Ottawa, Canada:Carleton University.
|
[2] |
Burn, C.R., and P.A. Friele. 1989. Geomorphology, vegetation succession, soil characteristics and permafrost in retrogressive thaw slumps near Mayo, Yukon Territory. Arctic 42(1):31-40.
|
[3] |
Chen, J., L. Liu, T. Zhang, B. Cao, and H. Lin. 2018. Using persistent scatterer interferometry to map and quantify permafrost thaw subsidence:A case study of Eboling Mountain on the Qinghai-Tibet Plateau. Journal of Geophysical Research:Earth Surface 123(10):2663-2676.
|
[4] |
Cheng, G. 1983. The mechanism of repeated-segregation for the formation of thick layered ground ice. Cold Regions Science and Technology 8(1):57-66.
|
[5] |
Dagenais, S., J. Molson, J.M. Lemieux, R. Fortier, and R. Therrien. 2020. Coupled cryo-hydrogeological modelling of permafrost dynamics near Umiujaq (Nunavik, Canada). Hydrogeology Journal 28(3):887-904.
|
[6] |
Droppo, I.G., P. di Cenzo, R. McFadyen, and T. Reid. 2022. Assessment of the sediment and associated nutrient/contaminant continuum, from permafrost thaw slump scars to tundra lakes in the western Canadian Arctic. Permafrost and Periglacial Processes 33(1):32-45.
|
[7] |
Du, R., X. Peng, O.W. Frauenfeld, H. Jin, K. Wang, Y. Zhao, D. Luo, and C. Mu. 2023. Quantitative impact of organic matter and soil moisture on permafrost. Journal of Geophysical Research:Atmospheres 128(3):Article e2022JD037686.
|
[8] |
Everett, K.R. 1989. Glossary of permafrost and related ground-ice terms. Arctic and Alpine Research 21(2):213-213.
|
[9] |
Fan, X., Z. Lin, Z. Gao, X. Meng, F. Niu, J. Luo, G. Yin, F. Zhou, and A. Lan. 2021. Cryostructures and ground ice content in ice-rich permafrost area of the Qinghai-Tibet Plateau with computed tomography scanning. Journal of Mountain Science 18(5):1208-1221.
|
[10] |
Fan, X., Z. Lin, F. Niu, A. Lan, M. Yao, and W. Li. 2022. Near-surface heat transfer at two gentle slope sites with differing aspects, Qinghai-Tibet Plateau. Frontiers in Environmental Science 10:Article 1037331.
|
[11] |
Farquharson, L.M., V.E. Romanovsky, W.L. Cable, D.A. Walker, S.V. Kokelj, and D. Nicolsky. 2019. Climate change drives widespread and rapid thermokarst development in very cold permafrost in the Canadian high arctic. Geophysical Research Letters 46(12):6681-6689.
|
[12] |
Felix, D., I. Albayrak, and R.M. Boes. 2018. In-situ investigation on real-time suspended sediment measurement techniques:Turbidimetry, acoustic attenuation, laser diffraction (LISST) and vibrating tube densimetry. International Journal of Sediment Research 33(1):3-17.
|
[13] |
Fortier, R., A.-M. Leblanc, M. Allard, and S. Buteau. 2008. Internal structure and conditions of permafrost mounds at Umiujaq in Nunavik, Canada, inferred from field investigation and electrical resistivity tomography. Canadian Journal of Earth Sciences 45(3):367-387.
|
[14] |
Fraser, R.H., S.V. Kokelj, T.C. Lantz, M. McFarlane-Winchester, I. Olthof, and D. Lacelle. 2018. Climate sensitivity of high arctic permafrost terrain demonstrated by widespread ice-wedge thermokarst on Banks Island. Remote Sensing 10(6):Article 954.
|
[15] |
French, H.M. 2017. Thermokarst processes and landforms. In The periglacial environment 4e, ed. H.M. French, 169-192. Hoboken, NY:John Wiley & Sons.
|
[16] |
Grenier, C., H. Anbergen, V. Bense, Q. Chanzy, E. Coon, N. Collier, F. Costard, and M. Ferry et al. 2018. Groundwater flow and heat transport for systems undergoing freeze-thaw:Intercomparison of numerical simulators for 2D test cases. Advances in Water Resources 114:196-218.
|
[17] |
Huang, L., L. Liu, J. Luo, Z. Lin, and F. Niu. 2021. Automatically quantifying evolution of retrogressive thaw slumps in Beiluhe (Tibetan Plateau) from multi-temporal CubeSat images. International Journal of Applied Earth Observation and Geoinformation 102:Article 102399.
|
[18] |
Jame, Y.W., and D.I. Norum. 1980. Heat and mass transfer in a freezing unsaturated porous medium. Water Resources Research 16(4):811-819.
|
[19] |
Jiang, G., S. Pang, S. Gao, A.G. Lewkowicz, H. Zhao, and Q. Wu. 2022. Development of a rapid active layer detachment slide in the Fenghuoshan Mountains, Qinghai-Tibet Plateau. Permafrost and Periglacial Processes 33(3):298-309.
|
[20] |
Jiao, C., F. Niu, P. He, L. Ren, J. Luo, and Y. Shan. 2022. Deformation and volumetric change in a typical retrogressive thaw slump in permafrost regions of the central Tibetan Plateau, China. Remote Sensing 14(21):Article 5592.
|
[21] |
Jiao, C., Y. Wang, Y. Shan, P. He, and J. He. 2023. Quantifying the effect of a retrogressive thaw slump on soil freeze-thaw erosion in permafrost regions on the Qinghai-Tibet Plateau, China. Land Degradation & Development 34(9):2573-2588.
|
[22] |
Kanevskiy, M., Y. Shur, M.T. Jorgenson, C.L. Ping, G.J. Michaelson, D. Fortier, E. Stephani, M. Dillon, and V. Tumskoy. 2013. Ground ice in the upper permafrost of the Beaufort Sea coast of Alaska. Cold Regions Science and Technology 85:56-70.
|
[23] |
Kerfoot, D.E. 1969. The geomorphology and permafrost conditions of Garry Island, NWT. Vancouver, Canada:University of British Columbia.
|
[24] |
Kokelj, S.V., R.E. Jenkins, D. Milburn, C.R. Burn, and N. Snow. 2005. The influence of thermokarst disturbance on the water quality of small upland lakes, Mackenzie Delta region, Northwest Territories, Canada. Permafrost and Periglacial Processes 16(4):343-353.
|
[25] |
Kurylyk, B.L., M. Hayashi, W.L. Quinton, J.M. McKenzie, and C.I. Voss. 1969. Water resources research. Journal of the American Water Resources Association 5(3):2-2.
|
[26] |
Lantz, T.C., S.V. Kokelj, S.E. Gergel, and G.H.R. Henry. 2009. Relative impacts of disturbance and temperature:Persistent changes in microenvironment and vegetation in retrogressive thaw slumps. Global Change Biology 15(7):1664-1675.
|
[27] |
Lewkowicz, A.G. 1985. Use of an ablatometer to measure short-term ablation of exposed ground ice. Canadian Journal of Earth Sciences 22(12):1767-1773.
|
[28] |
Lewkowicz, A.G. 1986. Rate of short-term ablation of exposed ground ice, Banks Island, Northwest Territories, Canada. Journal of Glaciology 32(112):511-519.
|
[29] |
Lewkowicz, A.G., and R.G. Way. 2019. Extremes of summer climate trigger thousands of thermokarst landslides in a High Arctic environment. Nature Communications 10(1):Article 1329.
|
[30] |
Lin, Z., Z. Gao, X. Fan, F. Niu, J. Luo, G. Yin, and M. Liu. 2020. Factors controlling near surface ground-ice characteristics in a region of warm permafrost, Beiluhe Basin, Qinghai-Tibet Plateau. Geoderma 376:Article 114540.
|
[31] |
Lin, Z., F. Niu, H. Liu, and J. Lu. 2011. Hydrothermal processes of alpine tundra lakes, Beiluhe Basin, Qinghai-Tibet Plateau. Cold Regions Science and Technology 65(3):446-455.
|
[32] |
Liu, L., K. Schaefer, A. Gusmeroli, G. Grosse, B.M. Jones, T. Zhang, and A.D. Parsekian. 2014. The cryosphere seasonal thaw settlement at drained thermokarst lake basins, Arctic Alaska. The Cryosphere 8(3):815-826.
|
[33] |
Liu, C., L. Zhu, J. Wang, J. Ju, Q. Ma, B. Qiao, Y. Wang, and T. Xu et al. 2021. In-situ water quality investigation of the lakes on the Tibetan Plateau. Science Bulletin 66(17):1727-1730.
|
[34] |
Luo, J., Z. Lin, G. Yin, F. Niu, M. Liu, Z. Gao, and X. Fan. 2019. The ground thermal regime and permafrost warming at two upland, sloping, and undisturbed sites, Kunlun Mountain, Qinghai-Tibet Plateau. Cold Regions Science and Technology 167:Article 102862.
|
[35] |
Luo, J., F. Niu, Z. Lin, M. Liu, and G. Yin. 2019. Recent acceleration of thaw slumping in permafrost terrain of Qinghai-Tibet Plateau:An example from the Beiluhe region. Geomorphology 341:79-85.
|
[36] |
Luo, J., F. Niu, Z. Lin, M. Liu, G. Yin, and Z. Gao. 2022. Inventory and frequency of retrogressive thaw slumps in permafrost region of the Qinghai-Tibet Plateau. Geophysical Research Letters 49(23):Article e2022GL099829.
|
[37] |
Masyagina, O.V., and O.V. Menyailo. 2020. The impact of permafrost on carbon dioxide and methane fluxes in Siberia:A meta-analysis. Environmental Research 182:Article 109096.
|
[38] |
Meng, Q., E. Intrieri, F. Raspini, Y. Peng, H. Liu, and N. Casagli. 2022. Satellite-based interferometric monitoring of deformation characteristics and their relationship with internal hydrothermal structures of an earthflow in Zhimei, Yushu, Qinghai-Tibet Plateau. Remote Sensing of Environment 273:Article 112987.
|
[39] |
Molson, J.W., and E.O. Frind. 2020. HEATFLOW-SMOKER:Density-dependent flow and advective-dispersive transport of thermal energy, mass or residence time. User guide. Laval University, Canada.
|
[40] |
Morino, C., S.J. Conway, M.R. Balme, J.K. Helgason, Þ Sæmundsson, C. Jordan, J. Hillier, and T. Argles. 2021. The impact of ground-ice thaw on landslide geomorphology and dynamics:Two case studies in northern Iceland. Landslides 18(8):2785-2812.
|
[41] |
Mu, C., J. Shang, T. Zhang, C. Fan, S. Wang, X. Peng, W. Zhong, F. Zhang, M. Mu, and L. Jia. 2020. Acceleration of thaw slump during 1997-2017 in the Qilian Mountains of the northern Qinghai-Tibetan Plateau. Landslides 17:1051-1062.
|
[42] |
Nicu, I.C., L. Lombardo, and L. Rubensdotter. 2021. Preliminary assessment of thaw slump hazard to Arctic cultural heritage in Nordenskiöld Land. Svalbard. Landslides 18(8):2935-2947.
|
[43] |
Niu, F., J. Luo, Z. Lin, W. Ma, and J. Lu. 2012. Development and thermal regime of a thaw slump in the Qinghai-Tibet Plateau. Cold Regions Science and Technology 83:131-138.
|
[44] |
Ohara, N., B.M. Jones, A.D. Parsekian, K.M. Hinkel, K. Yamatani, M. Kanevskiy, R.C. Rangel, A.L. Breen, and H. Bergstedt. 2022. A new Stefan equation to characterize the evolution of thermokarst lake and talik geometry. Cryosphere 16(4):1247-1264.
|
[45] |
Palmer, C.D., D.W. Blowes, E.O. Frind, and J.W. Molson. 1992. Thermal energy storage in an unconfined aquifer:1. Field injection experiment. Water Resources Research 28(10):2845-2856.
|
[46] |
Perreault, J., R. Fortier, and J.W. Molson. 2021. Numerical modelling of permafrost dynamics under climate change and evolving ground surface conditions:Application to an instrumented permafrost mound at Umiujaq, Nunavik (Québec). Canada. Écoscience 28(3-4):377-397.
|
[47] |
Post, V., H. Kooi, and C. Simmons. 2007. Using hydraulic head measurements in variable-density ground water flow analyses. Ground Water 45(6):664-671.
|
[48] |
Sun, Z., Y. Wang, Y. Sun, F. Niu, and Z. Gao. 2017. Creep characteristics and process analyses of a thaw slump in the permafrost region of the Qinghai-Tibet Plateau, China. Geomorphology 293:1-10.
|
[49] |
Swanson, D.K. 2021. Permafrost thaw-related slope failures in Alaska's Arctic National Parks, c. 1980-2019. Permafrost and Periglacial Processes 32(3):392-406.
|
[50] |
Tebbens, S.F. 2020. Landslide scaling:A review. Earth and Space Science 7(1):Article e2019EA000662.
|
[51] |
Turner, K.W., M.D. Pearce, and D.D. Hughes. 2021. Detailed characterization and monitoring of a retrogressive thaw slump from remotely piloted aircraft systems and identifying associated influence on carbon and nitrogen export. Remote Sensing 13(2):Article 171.
|
[52] |
van der Sluijs, J., S.V. Kokelj, R.H. Fraser, J. Tunnicliffe, and D. Lacelle. 2018. Permafrost terrain dynamics and infrastructure impacts revealed by UAV photogrammetry and thermal imaging. Remote Sensing 10(11):Article 1734.
|
[53] |
Wang, L., L. Zhao, H. Zhou, S. Liu, E. Du, D. Zou, G. Liu, C. Wang, and Y. Li. 2022. Permafrost ground ice melting and deformation time series revealed by Sentinel-1 InSAR in the Tanggula Mountain region on the Tibetan Plateau. Remote Sensing 14(4):Article 811.
|
[54] |
Yang, Z.G., X. Hu, X.Y. Li, Z. Gao, and Y.D. Zhao. 2021. Soil macropore networks derived from X-ray computed tomography in response to typical thaw slumps in Qinghai-Tibetan Plateau. China. Journal of Soils and Sediments 21(8):2845-2854.
|
[55] |
Yin, G., J. Luo, F. Niu, Z. Lin, and M. Liu. 2021. Thermal regime and variations in the island permafrost near the northern permafrost boundary in Xidatan, Qinghai-Tibet Plateau. Frontiers in Earth Science 9:Article 708630.
|
[56] |
Zhao, L., C.L. Ping, D. Yang, G. Cheng, Y. Ding, and S. Liu. 2004. Changes of climate and seasonally frozen ground over the past 30 years in Qinghai-Xizang (Tibetan) Plateau, China. Global and Planetary Change 43(1-2):19-31.
|