Citation: | Huarui Zhang, Huini Wang, Jun Zhang, Jing Luo, Guoan Yin. Automatic Identification of Thaw Slumps Based on Neural Network Methods and Thaw Slumping Susceptibility[J]. International Journal of Disaster Risk Science, 2023, 14(4): 539-548. doi: 10.1007/s13753-023-00504-y |
[1] |
Aas, K.S., L. Martin, J. Nitzbon, M. Langer, and S. Westermann. 2019. Thaw processes in ice-rich permafrost landscapes represented with laterally coupled tiles in a land surface model. The Cryosphere 13(2):591-609.
|
[2] |
Anyamba, A., and C.J. Tucker. 2005. Analysis of Sahelian vegetation dynamics using NOAA-AVHRR NDVI data from 1981-2003. Journal of Arid Environments 63(3):596-614.
|
[3] |
Berardino, P., G. Fornaro, R. Lanari, and E. Sansosti. 2002. A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms. IEEE Transactions on Geoscience and Remote Sensing 40(1):2375-2383.
|
[4] |
Bo, Y., and I. Lane. 2015. Multi-task deep learning for image understanding. Paper presented at the 2014 6th International Conference of Soft Computing and Pattern Recognition (SoCPaR), 11-14 August 2014, Tunis, Tunisia.
|
[5] |
Eigen, D., and R. Fergus. 2014. Predicting depth, surface normals and semantic labels with a common multi-scale convolutional architecture. In Proceedings of the 2015 IEEE International Conference on Computer Vision (ICCV), 7-13 December 2015, Santiago, Chile.
|
[6] |
Farabet, C., C. Couprie, L. Najman, and L. Yann. 2013. Learning hierarchical features for scene labeling. IEEE Transactions on Pattern Analysis & Machine Intelligence 35(8):1915-1929.
|
[7] |
Hu, B., B. Yang, X. Zhang, X. Chen, and Y. Wu. 2019. Time-series displacement of land subsidence in Fuzhou downtown, monitored by SBAS-InSAR technique. Journal of Sensors 2019:Article 3162652.
|
[8] |
Huang, L., L. Liu, J. Jiang, and T. Zhang. 2018. Automatic mapping of thermokarst landforms from remote sensing images using deep learning:A case study in the northeastern Tibetan Plateau. Remote Sensing 10(12):Article 2067.
|
[9] |
Jolivet, R., C. Lasserre, M.-P. Doin, S. Guillaso, G. Peltzer, R. Dailu, J. Sun, Z.-K. Shen, and X. Xu. 2012. Shallow creep on the Haiyuan fault (Gansu, China) revealed by SAR interferometry. Journal of Geophysical Research:Solid Earth. https://doi.org/10.1029/2011JB008732.
|
[10] |
Koven, C.D., B. Ringeval, P. Friedlingstein, P. Ciais, P. Cadule, D. Khvorostyanov, G. Krinner, and C. Tarnocai. 2011. Permafrost carbon-climate feedbacks accelerate global warming. Proceedings of the National Academy of Sciences of the United States of America 108(36):14769-14774.
|
[11] |
Li, H., L. Zhe, X. Shen, J. Brandt, and H. Gang. 2015. A convolutional neural network cascade for face detection. Paper presented at the 2015 IEEE Conference on Computer Vision & Pattern Recognition (CVPR), 7-12 June 2015, Boston, MA, USA.
|
[12] |
Li, X., Z. Liu, P. Luo, C.C. Loy, and X. Tang. 2017. Not all pixels are equal:Difficulty-aware semantic segmentation via deep layer cascade. Paper presented at the 2017 IEEE Conference on Computer Vision & Pattern Recognition (CVPR), 21-26 July 2017, Honolulu, HI, USA.
|
[13] |
Lian, X., Y. Pang, J. Han, and J. Pan. 2021. Cascaded hierarchical atrous spatial pyramid pooling module for semantic segmentation. Pattern Recognition 110:Article 107622.
|
[14] |
Luo, J., F. Niu, Z. Lin, M. Liu, and G. Yin. 2015. Thermokarst lake changes between 1969 and 2010 in the Beilu River Basin, Qinghai-Tibet Plateau. China. Science Bulletin 60(5):556-564.
|
[15] |
Murthy, V.N., V. Singh, T. Chen, R. Manmatha, and D. Comaniciu. 2016. Deep decision network for multi-class image classification. Paper presented at the 2016 IEEE Conference on Computer Vision & Pattern Recognition (CVPR), 27-30 June 2016, Las Vegas, NV, USA.
|
[16] |
Niu, F., L. Zhang, Q. Yu, and Q. Xie. 2002. Study on slope types and stability of typical slopes in permafrost regions of the Tibetan Plateau. Journal of Glaciology and Geocryology 5:608-613 (in Chinese).
|
[17] |
Nowozin, S. 2014. Optimal decisions from probabilistic models:The intersection-over-union case. Paper presented at the 2014 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 23-28 June 2014, Columbus, OH, USA.
|
[18] |
Peng, X., T. Zhang, O.W. Frauenfeld, K. Wa Ng, and J. Luo. 2018. Evaluation and quantification of surface air temperature over Eurasia based on CMIP5 models. Climate Research 77(2):167-180.
|
[19] |
Pinheiro, P., and R. Collobert. 2013. Recurrent convolutional neural networks for scene parsing. http://arxiv.org/abs/1306.2795. https://doi.org/10.48550/arXiv.1306.2795.
|
[20] |
Qayyum, A., W.M. Iftikhar Ahmad, M.O. Alassafi, R. Alghamdi, M. Mazher, and M. Mazher. 2020. Automatic segmentation using a hybrid dense network integrated with an 3D-Atrous spatial pyramid pooling module for computed tomography (CT) imaging. IEEE Access 8:169794-169803.
|
[21] |
Tizzani, P., P. Berardino, F. Casu, P. Euillades, M. Manzo, G.P. Ricciardi, G. Zeni, and R. Lanari. 2007. Surface deformation of Long Valley caldera and Mono Basin, California, investigated with the SBAS-InSAR approach. Remote Sensing of Environment 108(3):277-289.
|
[22] |
Wang, C., Z. Zhang, H. Zhang, B. Zhang, Y. Tang, and Q. Wu. 2018. Active layer thickness retrieval of Qinghai-Tibet permafrost using the TerraSAR-X InSAR technique. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 11(11):4403-4413.
|
[23] |
Zhang, Z., M. Wang, Z. Wu, and X. Liu. 2019. Permafrost deformation monitoring along the Qinghai-Tibet plateau engineering corridor using InSAR observations with multi-sensor SAR datasets from 1997-2018. Sensors (Basel) 19(23):Article 5306.
|
[24] |
Zhao, L., D. Zou, G. Hu, E. Du, Q. Pang, Y. Xiao, R. Li, and Y. Sheng et al. 2020. Changing climate and the permafrost environment on the Qinghai-Tibet (Xizang) Plateau. Permafrost and Periglacial Processes 31(3):396-405.
|