Citation: | Zhiping Jiao, Zhida Xu, Rui Guo, Zhiwei Zhou, Liming Jiang. Potential of Multi-temporal InSAR for Detecting Retrogressive Thaw Slumps: A Case of the Beiluhe Region of the Tibetan Plateau[J]. International Journal of Disaster Risk Science, 2023, 14(4): 523-538. doi: 10.1007/s13753-023-00505-x |
[1] |
Abbott, B.W., and J.B. Jones. 2015. Permafrost collapse alters soil carbon stocks, respiration, CH4, and N2O in upland tundra. Global Change Biology 21(12):4570-4587.
|
[2] |
Balser, A.W. 2015. Retrogressive thaw slumps and active layer detachment slides in the Brooks Range and foothills of Northern Alaska:Terrain and timing. Fairbanks, AK:University of Alaska Fairbanks.
|
[3] |
Berardino, P., G. Fornaro, R. Lanari, and E. Sansosti. 2002. A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms. IEEE Transactions on Geoscience and Remote Sensing 40(11):2375-2383.
|
[4] |
Chen, F., H. Lin, W. Zhou, T. Hong, and G. Wang. 2013. Surface deformation detected by ALOS PALSAR small baseline SAR interferometry over permafrost environment of Beiluhe section, Tibet Plateau, China. Remote Sensing of Environment 138:10-18.
|
[5] |
Chen, J., L. Liu, T. Zhang, B. Cao, and H. Lin. 2018. Using persistent scatterer interferometry to map and quantify permafrost thaw subsidence:A case study of Eboling Mountain on the Qinghai-Tibet Plateau. Journal of Geophysical Research:Earth Surface 123(10):2663-2676.
|
[6] |
Chen, J., T. Wu, D. Zou, L. Liu, X. Wu, W. Gong, X. Zhu, R. Li, et al. 2022. Magnitudes and patterns of large-scale permafrost ground deformation revealed by Sentinel-1 InSAR on the central Qinghai-Tibet Plateau. Remote Sensing of Environment 268:Article 112778.
|
[7] |
Dini, B., A. Manconi, and S. Loew. 2019. Investigation of slope instabilities in NW Bhutan as derived from systematic DInSAR analyses. Engineering Geology 259:Article 105111.
|
[8] |
Ferretti, A., C. Prati, and F. Rocca. 2001. Permanent scatterers in SAR interferometry. IEEE Transactions on Geoscience and Remote Sensing 39(1):8-20.
|
[9] |
Guzzetti, F., A.C. Mondini, M. Cardinali, F. Fiorucci, M. Santangelo, and K.-T. Chang. 2012. Landslide inventory maps:New tools for an old problem. Earth-Science Reviews 112(1-2):42-66.
|
[10] |
Hu, X., T. Wang, T.C. Pierson, Z. Lu, J. Kim, and T.H. Cecere. 2016. Detecting seasonal landslide movement within the cascade landslide complex (Washington) using time-series SAR imagery. Remote Sensing of Environment 187:49-61.
|
[11] |
Huang, L., J. Luo, Z. Lin, F. Niu, and L. Liu. 2020. Using deep learning to map retrogressive thaw slumps in the Beiluhe region (Tibetan Plateau) from CubeSat images. Remote Sensing of Environment 237:Article 111534.
|
[12] |
Jiao, C., F. Niu, P. He, L. Ren, J. Luo, and Y. Shan. 2022. Deformation and volumetric change in a typical retrogressive thaw slump in permafrost regions of the central Tibetan Plateau, China. Remote Sensing 14(21):Article 5592.
|
[13] |
Kang, Y., Z. Lu, C. Zhao, and W. Qu. 2023. Inferring slip-surface geometry and volume of creeping landslides based on InSAR:A case study in Jinsha River basin. Remote Sensing of Environment 294:Article 113620.
|
[14] |
Kokelj, S.V., and M.T. Jorgenson. 2013. Advances in thermokarst research:Recent advances in research investigating thermokarst processes. Permafrost and Periglacial Processes 24(2):108-119.
|
[15] |
Kokelj, S.V., J. Kokoszka, J. van der Sluijs, A.C.A. Rudy, J. Tunnicliffe, S. Shakil, S.E. Tank, and S. Zolkos. 2021. Thaw-driven mass wasting couples slopes with downstream systems, and effects propagate through Arctic drainage networks. The Cryosphere 15(7):3059-3081.
|
[16] |
Lewkowicz, A.G. 2007. Dynamics of active-layer detachment failures, Fosheim Peninsula, Ellesmere Island, Nunavut. Canada. Permafrost and Periglacial Processes 18(1):89-103.
|
[17] |
Lewkowicz, A.G., and R.G. Way. 2019. Extremes of summer climate trigger thousands of thermokarst landslides in a high Arctic environment. Nature Communications 10(1):Article 1329.
|
[18] |
Lin, Z., F. Niu, H. Liu, and J. Lu. 2011. Hydrothermal processes of alpine tundra lakes, Beiluhe Basin, Qinghai-Tibet Plateau. Cold Regions Science and Technology 65(3):446-455.
|
[19] |
Liu, L., K.M. Schaefer, A.C. Chen, A. Gusmeroli, H.A. Zebker, and T. Zhang. 2015. Remote sensing measurements of thermokarst subsidence using InSAR:Insar thermokarst. Journal of Geophysical Research:Earth Surface 120(9):1935-1948.
|
[20] |
Luo, J., F. Niu, Z. Lin, M. Liu, and G. Yin. 2015. Thermokarst lake changes between 1969 and 2010 in the Beilu River Basin, Qinghai-Tibet Plateau. China. Science Bulletin 60(5):556-564.
|
[21] |
Luo, J., F. Niu, Z. Lin, M. Liu, and G. Yin. 2019. Recent acceleration of thaw slumping in permafrost terrain of Qinghai-Tibet Plateau:An example from the Beiluhe region. Geomorphology 341:79-85.
|
[22] |
Massonnet, D., and K.L. Feigl. 1998. Radar interferometry and its application to changes in the Earth's surface. Reviews of Geophysics 36(4):441-500.
|
[23] |
Mu, C., B.W. Abbott, A.J. Norris, M. Mu, C. Fan, X. Chen, L. Jia, R. Yang, et al. 2020. The status and stability of permafrost carbon on the Tibetan Plateau. Earth-Science Reviews 211:Article 103433.
|
[24] |
Mu, C., B.W. Abbott, X. Wu, Q. Zhao, H. Wang, H. Su, S. Wang, and T. Gao et al. 2017. Thaw depth determines dissolved organic carbon concentration and biodegradability on the northern Qinghai-Tibetan Plateau. Geophysical Research Letters 44(18):9389-9399.
|
[25] |
Paquette, M., A.C.A. Rudy, D. Fortier, and S.F. Lamoureux. 2020. Multi-scale site evaluation of a relict active layer detachment in a high Arctic landscape. Geomorphology 359:Article 107159.
|
[26] |
Patton, A.I., S.L. Rathburn, D.M. Capps, D. McGrath, and R.A. Brown. 2021. Ongoing landslide deformation in thawing permafrost. Geophysical Research Letters 48(16):Article e2021GL092959.
|
[27] |
Patton, A.I., S.L. Rathburn, and D.M. Capps. 2019. Landslide response to climate change in permafrost regions. Geomorphology 340:116-128.
|
[28] |
Ran, Y., X. Li, and G. Cheng. 2018. Climate warming over the past half century has led to thermal degradation of permafrost on the Qinghai-Tibet Plateau. The Cryosphere 12(2):595-608.
|
[29] |
Runge, A., I. Nitze, and G. Grosse. 2022. Remote sensing annual dynamics of rapid permafrost thaw disturbances with LandTrendr. Remote Sensing of Environment 268:Article 112752.
|
[30] |
Torres, R., P. Snoeij, D. Geudtner, D. Bibby, M. Davidson, E. Attema, P. Potin, and B. Rommen et al. 2012. GMES Sentinel-1 Mission. Remote Sensing of Environment 120:9-24.
|
[31] |
Turetsky, M.R., B.W. Abbott, M.C. Jones, K.W. Anthony, D. Olefeldt, E.A.G. Schuur, C. Koven, and A.D. McGuire et al. 2019. Permafrost collapse is accelerating carbon release. Nature 569(7754):32-34.
|
[32] |
Van Everdingen, R.O. 1998. Multi-language glossary of permafrost and related ground-ice terms in Chinese, English, French, German, Icelandic, Italian, Norwegian, Polish, Romanian, Russian, Spanish, and Swedish. Ottawa:International Permafrost Association, Terminology Working Group.
|
[33] |
Wang, J., C. Wang, H. Zhang, Y. Tang, X. Zhang, and Z. Zhang. 2020. Small-baseline approach for monitoring the freezing and thawing deformation of permafrost on the Beiluhe Basin, Tibetan Plateau using TerraSAR-X and Sentinel-1 data. Sensors 20(16):Article 4464.
|
[34] |
Wang, L., L. Zhao, H. Zhou, S. Liu, G. Hu, Z. Li, C. Wang, and J. Zhao. 2023. Evidence of ground ice melting detected by InSAR and in situ monitoring over permafrost terrain on the Qinghai-Xizang (Tibet) Plateau. Permafrost and Periglacial Processes 34(1):52-67.
|
[35] |
Witharana, C., M.R. Udawalpola, A.K. Liljedahl, M.K.W. Jones, B.M. Jones, A. Hasan, D. Joshi, and E. Manos. 2022. Automated detection of retrogressive thaw slumps in the high Arctic using high-resolution satellite imagery. Remote Sensing 14(17):Article 4132.
|
[36] |
Wu, Q., Y. Hou, H. Yun, and Y. Liu. 2015. Changes in active-layer thickness and near-surface permafrost between 2002 and 2012 in alpine ecosystems, Qinghai-Xizang (Tibet) Plateau, China. Global and Planetary Change 124:149-155.
|
[37] |
Wu, T., L. Zhao, R. Li, Q. Wang, C. Xie, and Q. Pang. 2013. Recent ground surface warming and its effects on permafrost on the central Qinghai-Tibet Plateau. International Journal of Climatology 33(4):920-930.
|
[38] |
Xia, Z., L. Huang, C. Fan, S. Jia, Z. Lin, L. Liu, J. Luo, F. Niu, and T. Zhang. 2022. Retrogressive thaw slumps along the Qinghai-Tibet Engineering Corridor:A comprehensive inventory and their distribution characteristics. Earth System Science Data 14(9):3875-3887.
|
[39] |
Xia, Z., L. Huang, and L. Liu. 2021. An inventory of retrogressive thaw slumps along the vulnerable Qinghai-Tibet Engineering Corridor. PANGAEA. https://doi.org/10.1594/PANGAEA.933957.
|
[40] |
Yang, M., F.E. Nelson, N.I. Shiklomanov, D. Guo, and G. Wan. 2010. Permafrost degradation and its environmental effects on the Tibetan Plateau:A review of recent research. Earth-Science Reviews 103(1-2):31-44.
|
[41] |
Yao, T., Y. Xue, D. Chen, F. Chen, L. Thompson, P. Cui, T. Koike, and W.K.-M. Lau et al. 2019. Recent Third Pole's rapid warming accompanies cryospheric melt and water cycle intensification and interactions between monsoon and environment:Multidisciplinary approach with observations, modeling, and analysis. Bulletin of the American Meteorological Society 100(3):423-444.
|
[42] |
Yin, G., F. Niu, Z. Lin, J. Luo, and M. Liu. 2017. Effects of local factors and climate on permafrost conditions and distribution in Beiluhe Basin, Qinghai-Tibet Plateau, China. Science of the Total Environment 581-582:472-485.
|
[43] |
Zhang, T. 2005. Influence of the seasonal snow cover on the ground thermal regime:An overview. Reviews of Geophysics 43(4):RG4002. https://doi.org/10.1029/2004RG000157.
|
[44] |
Zhang, T., D. Li, A.E. East, D.E. Walling, S. Lane, I. Overeem, A.A. Beylich, M. Koppes, and X. Lu. 2022. Warming-driven erosion and sediment transport in cold regions. Nature Reviews Earth & Environment 3:832-851.
|
[45] |
Zhang, Z., H. Lin, M. Wang, X. Liu, Q. Chen, C. Wang, and H. Zhang. 2022. A review of satellite synthetic aperture radar interferometry applications in permafrost regions:Current status, challenges, and trends. IEEE Geoscience and Remote Sensing Magazine 10(3):93-114.
|
[46] |
Zhong, W., T. Zhang, J. Chen, J. Shang, S. Wang, C. Mu, and C. Fan. 2021. Seasonal deformation monitoring over thermokarst landforms using terrestrial laser scanning in northeastern Qinghai-Tibetan Plateau. International Journal of Applied Earth Observation and Geoinformation 103:Article 102501.
|
[47] |
Zhou, Y., D. Guo, G. Qiu, G. Cheng, and S. Li. 2000. Geocryology in China. Beijing:Science Press.
|