Citation: | Junlin Zhang, Wei Xu, Yu Qiao, Xinli Liao, Chenna Meng, Qinmei Han. A New Method to Identify the Maximum Time Interval between Individual Events in Compound Rainstorm and Heatwave Events[J]. International Journal of Disaster Risk Science, 2024, 15(3): 453-466. doi: 10.1007/s13753-024-00569-3 |
[1] |
BBC News. 2022. Europe storms: Children among dead in France, Austria and Italy. https://www.bbc.com/news/world-europe-62598573. Accessed 25 Feb 2024.
|
[2] |
Bevacqua, E., M.I. Vousdoukas, G. Zappa, K. Hodges, T.G. Shepherd, D. Maraun, L. Mentaschi, and L. Feyen. 2020. More meteorological events that drive compound coastal flooding are projected under climate change. Communications Earth & Environment 1: Article 47.
|
[3] |
Bevacqua, E., G. Zappa, F. Lehner, and J. Zscheischler. 2022. Precipitation trends determine future occurrences of compound hot-dry events. Nature Climate Change 12(4): 350-355.
|
[4] |
Chen, Y., Z. Liao, Y. Shi, P. Li, and P. Zhai. 2022. Greater flash flood risks from hourly precipitation extremes preconditioned by heatwaves in the Yangtze River Valley. Geophysical Research Letters 49: Article e2022GL099485.
|
[5] |
Chen, Y., Z. Liao, Y. Shi, Y. Tian, and P. Zhai. 2021. Detectable increases in sequential flood‐heatwave events across China during 1961-2018. Geophysical Research Letters 48,: Article e2021GL092549.
|
[6] |
Edmonds, D.A., R.L. Caldwell, E.S. Brondizio, and S.M.O. Siani. 2020. Coastal flooding will disproportionately impact people on river deltas. Nature Communications 11: Article 4741.
|
[7] |
Fang, B., and M. Lu. 2023. Asia faces a growing threat from intraseasonal compound weather whiplash. Earth’s Future 11: Article e2022EF003111.
|
[8] |
Feng, K., M. Ouyang, and N. Lin. 2022. Tropical cyclone-blackout-heatwave compound hazard resilience in a changing climate. Nature Communications 13: Article 4421.
|
[9] |
Field, C., V. Barros, T. Stocker, D. Qin, D.J. Dokken, K.L. Ebi, M.D. Mastrandrea, and K.J. Mach et al. eds. 2012. In Managing the risks of extreme events and disasters to advance climate change adaptation: Special report of the Intergovernmental Panel on Climate Change. Cambridge, UK: Cambridge University Press.
|
[10] |
Fowler, H.J., G. Lenderink, A.F. Prein, S. Westra, R.P. Allan, N. Ban, R. Barbero, and P. Berg et al. 2021. Anthropogenic intensification of short-duration rainfall extremes. Nature Reviews Earth & Environment 2: 107-122.
|
[11] |
Ghanbari, M., M. Arabi, S.C. Kao, J. Obeysekera, and W. Sweet. 2021. Climate change and changes in compound coastal-riverine flooding hazard along the US coasts. Earth’s Future 9: Article e2021EF002055.
|
[12] |
Gu, L., J. Chen, J. Yin, L.J. Slater, H.-M. Wang, Q. Guo, M. Feng, H. Qin, et al. 2022. Global increases in compound flood‐hot extreme hazards under climate warming. Geophysical Research Letters 49: Article e2022GL097726.
|
[13] |
IPCC (Intergovernmental Panel on Climate Change). 2021. Climate change 2021: The physical science basis. Cambridge, UK: Cambridge University Press.
|
[14] |
Kim, H., G.D. Madakumbura, S.Y. Wang, H. Shiogama, E. Fischer, N. Utsumi, and J. Yoon. 2019. Flood and heatwave in Japan 2018 and future increase of consecutive compound risk in a warmer world. In Proceedings of the American Geophysical Union Fall Meeting 2019, 9-13 December 2019, San Francisco, USA.
|
[15] |
Kong, Q., S.B. Guerreiro, S. Blenkinsop, X.-F. Li, and H.J. Fowler. 2020. Increases in summertime concurrent drought and heatwave in Eastern China. Weather and Climate Extremes 28: Article 100242.
|
[16] |
Leonard, M., S. Westra, A. Phatak, M. Lambert, B. van den Hurk, K. McInnes, J. Risbey, and S. Schuster et al. 2014. A compound event framework for understanding extreme impacts. Climate Change 5(1): 113-128.
|
[17] |
Li, C., R. Min, X. Gu, A. Gulakhmadov, S. Luo, R. Liu, J. Slater, and F. Xie. 2022. Substantial increase in heavy precipitation events preceded by moist heatwaves over China during 1961-2019. Frontiers in Environmental Science 10: Article 951392.
|
[18] |
Liao, Z., Y. Chen, W. Li, and P. Zhai. 2021. Growing threats from unprecedented sequential flood‐hot extremes across China. Geophysical Research Letters 48(18): Article e2021GL094505.
|
[19] |
Matthews, T., R.L. Wilby, and C. Murphy. 2019. An emerging tropical cyclone-deadly heat compound hazard. Nature Climate Change 9: 602-606.
|
[20] |
Mukherjee, S., and A.K. Mishra. 2021. Increase in compound drought and heatwaves in a warming world. Geophysical Research Letters 48: Article e2020GL090617.
|
[21] |
Mukherjee, S., A.K. Mishra, M. Ashfaq, and S.-C. Kao. 2022. Relative effect of anthropogenic warming and natural climate variability to changes in compound drought and heatwaves. Journal of Hydrology 605: Article 127396.
|
[22] |
Peter Sheng, Y., V.A. Paramygin, K. Yang, and A.A. Rivera-Nieves. 2022. A sensitivity study of rising compound coastal inundation over large flood plains in a changing climate. Scientific Reports 12: Article 3403.
|
[23] |
Qiu, J., B. Liu, F. Yang, X. Wang, and X. He. 2022. Quantitative stress test of compound coastal‐fluvial floods in China’s Pearl River Delta. Earth’s Future 10: Artcile e2021EF002638.
|
[24] |
Raghavendra, A., A.G. Dai, S.M. Milrad, and S.R. Cloutier-Bisbee. 2019. Floridian heatwaves and extreme precipitation: Future climate projections. Climate Dynamics 52: 495-508.
|
[25] |
Raymond, C., R.M. Horton, J. Zscheischler, O. Martius, A. AghaKouchak, J. Balch, S.G. Bowen, and S.J. Camargo et al. 2020. Understanding and managing connected extreme events. Nature Climate Change 10(7): 611-621.
|
[26] |
Ren, J., G. Huang, X. Zhou, and Y. Li. 2023. Downscaled compound heatwave and heavy-precipitation analyses for Guangdong, China in the twenty-first century. Climate Dynamics 61: 2885-2905.
|
[27] |
Sauter, C., H.J. Fowler, S. Westra, H. Ali, N. Peleg, and C.J. White. 2023. Compound extreme hourly rainfall preconditioned by heatwaves most likely in the mid-latitudes. Weather and Climate Extremes 40: Article 100563.
|
[28] |
Sauter, C., C.J. White, H.J. Fowler, and S. Westra. 2023. Temporally compounding heatwave-heavy rainfall events in Australia. International Journal of Climatology 43(2): 1050-1061.
|
[29] |
Wu, J., Y. Chen, Z. Liao, X. Gao, P. Zhai, and Y. Hu. 2022. Increasing risk from landfalling tropical cyclone-heatwave compound events to coastal and inland China. Environmental Research Letters 17(10). https://doi.org/10.1088/1748-9326/ac9747.
|
[30] |
You, J.W., and S. Wang. 2021. Higher probability of occurrence of hotter and shorter heat waves followed by heavy rainfall. Geophysical Research Letters 48: Article e2021GL094831.
|
[31] |
Zhang, W., and G. Villarini. 2020. Deadly compound heat stress‐flooding hazard across the Central United States. Geophysical Research Letters 47: Article e2020GL089185.
|
[32] |
Zscheischler, J., A.M. Michalak, C. Schwalm, M.D. Mahecha, D.N. Huntzinger, M. Reichstein, G. Berthier, and P. Ciais et al. 2014. Impact of large-scale climate extremes on biospheric carbon fluxes: An intercomparison based on MsTMIP data. Global Biogeochemical Cycles 28: 585-600.
|
[33] |
Zscheischler, J., S. Westra, B.J.J.M. Van Den Hurk, S.I. Seneviratne, P.J. Ward, A. Pitman, A. AghaKouchak, and D.N. Bresch et al. 2018. Future climate risk from compound events. Nature Climate Change 8: 469-477.
|