Volume 15 Issue 4
Aug.  2024
Turn off MathJax
Article Contents
Mengqi Ye, Philip J. Ward, Nadia Bloemendaal, Sadhana Nirandjan, Elco E. Koks. Risk of Tropical Cyclones and Floods to Power Grids in Southeast and East Asia[J]. International Journal of Disaster Risk Science, 2024, 15(4): 494-507. doi: 10.1007/s13753-024-00573-7
Citation: Mengqi Ye, Philip J. Ward, Nadia Bloemendaal, Sadhana Nirandjan, Elco E. Koks. Risk of Tropical Cyclones and Floods to Power Grids in Southeast and East Asia[J]. International Journal of Disaster Risk Science, 2024, 15(4): 494-507. doi: 10.1007/s13753-024-00573-7

Risk of Tropical Cyclones and Floods to Power Grids in Southeast and East Asia

doi: 10.1007/s13753-024-00573-7
Funds:

Mengqi Ye was supported by the China Scholarship Council. Elco E. Koks, Philip J. Ward, and Sadhana Nirandjan were funded by the European Union’s Horizon Europe MIRACA project (Grant Agreement No. 101093854), Horizon 2020 projects MYRIAD-EU (Grant Agreement No. 101003276), and CoCliCo (Grant Agreement No. 101003598).

  • Accepted Date: 2024-06-30
  • Available Online: 2024-10-26
  • Publish Date: 2024-08-02
  • Power grids play a critical role in modern society, serving as the lifeline of a well-functioning economy. This article presents a first large-scale study on the risk estimation of tropical cyclone (TC)-induced winds and coastal floods, which can widely impact power grids in Southeast and East Asia. Our comprehensive risk model incorporates detailed infrastructure data from OpenStreetMap (OSM) and government power grid maps, along with global hazard maps and vulnerability curves. The results reveal that the estimated expected annual damages from TCs and coastal floods to OSM-mapped assets account for approximately 0.07% (0.00–0.38%) and 0.02% (0.00–0.02%) of the total GDP of the study area, respectively. We analyzed the main sources of uncertainty in the risk model and emphasized the importance of understanding asset vulnerability. These results highlight the urgent need to strengthen power infrastructure to withstand the impacts of natural hazards, and the significance of reliable risk information for improving power grid design and planning. Focusing on developing more region-specific infrastructure data and vulnerability curves will improve the accuracy of risk estimation and provide valuable insights not only for the electricity sector but also for customers of other infrastructure systems that heavily rely on a stable supply of electricity.
  • loading
  • [1]
    Alemazkoor, N., B. Rachunok, D.R. Chavas, A. Staid, A. Louhghalam, R. Nateghi, and M. Tootkaboni. 2020. Hurricane-induced power outage risk under climate change is primarily driven by the uncertainty in projections of future hurricane frequency. Scientific Reports 10(1): Article 15270.
    [2]
    Arderne, C., C. Zorn, C. Nicolas, and E.E. Koks. 2020. Predictive mapping of the global power system using open data. Scientific Data 7(1): Article 19.
    [3]
    Argyroudis, S.A., S.Α Mitoulis, M.G. Winter, and A.M. Kaynia. 2019. Fragility of transport assets exposed to multiple hazards: State-of-the-art review toward infrastructural resilience. Reliability Engineering & System Safety 191: Article 106567.
    [4]
    Arrighi, C., M. Pregnolato, and F. Castelli. 2021. Indirect flood impacts and cascade risk across interdependent linear infrastructures. Natural Hazards and Earth System Sciences 21(6): 1955-1969.
    [5]
    Asian Development Bank. 2013. The rise of natural disasters in Asia and the Pacific: Learning from ADB’s experience. Mandaluyong City: Asian Development Bank.
    [6]
    Barrington-Leigh, C., and A. Millard-Ball. 2017. The world’s user-generated road map is more than 80% complete. PLOS ONE 12(8): Article e0180698.
    [7]
    Becker, M., M. Karpytchev, and A. Hu. 2023. Increased exposure of coastal cities to sea-level rise due to internal climate variability. Nature Climate Change 13(4): 367-374.
    [8]
    Bloemendaal, N., H. de Moel, S. Muis, I.D. Haigh, and J.C.J.H. Aerts. 2020. Estimation of global tropical cyclone wind speed probabilities using the STORM dataset. Scientific Data 7(1): Article 377.
    [9]
    Bloemendaal, N., H. de Moel, A.B. Martinez, S. Muis, I.D. Haigh, K. van der Wiel, R.J. Haarsma, and P.J. Ward et al. 2022. A globally consistent local-scale assessment of future tropical cyclone risk. Science Advances 8(17): Article eabm8438.
    [10]
    Braese, J., S.A. De Vries Robbe, and J. Rentschler. 2020. Coastal development between opportunity and disaster risk: A multisectoral risk assessment for Vietnam. Washington DC: World Bank Group.
    [11]
    Brown, R., M. Chan, L. Dow, B. Snyder, and L. Xu. 2009. Cost-benefit analysis of the deployment of utility infrastructure upgrades and storm hardening programs. Raleigh: Quanta Technology.
    [12]
    Dai, K., S.-E. Chen, M. Luo, and G. Loflin. 2017. A framework for holistic designs of power line systems based on lessons learned from Super Typhoon Haiyan. Sustainable Cities and Society 35: 350-364.
    [13]
    Dawson, R.J., D. Thompson, D. Johns, R. Wood, G. Darch, L. Chapman, P.N. Hughes, and G.V.R. Watson et al. 2018. A systems framework for national assessment of climate risks to infrastructure. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 376(2121): Article 20170298.
    [14]
    de Moel, H., N.E.M. Asselman, and J.C.J.H. Aerts. 2012. Uncertainty and sensitivity analysis of coastal flood damage estimates in the west of the Netherlands. Natural Hazards and Earth System Sciences 12(4): 1045-1058.
    [15]
    Do, V., H. McBrien, N.M. Flores, A.J. Northrop, J. Schlegelmilch, M.V. Kiang, and J.A. Casey. 2023. Spatiotemporal distribution of power outages with climate events and social vulnerability in the USA. Nature Communications 14(1): 2470.
    [16]
    FEMA (Federal Emergency Management Agency). 2021. Hazus inventory technical manual: Hazus 42 service pack 3. Washington DC: FEMA.
    [17]
    Forzieri, G., A.F.B. Bianchi eSilva, M.A. MarinHerrera, A. Leblois, C. Lavalle, and J..C..J..H.L. Aerts Feyen. 2018. Escalating impacts of climate extremes on critical infrastructures in Europe. Global Environmental Change 48: 97-107.
    [18]
    Hall, J.W., M. Tran, A.J. Hickford, and R.J. Nicholls. 2016. The future of national infrastructure: A system-of-systems approach. Cambridge: Cambridge University Press.
    [19]
    Harper, B.A., J.D. Kepert, and J.D. Ginger. 2010. Guidelines for converting between various wind averaging periods in tropical cyclone conditions. Switzerland: World Meteorological Organization (WHO).
    [20]
    He, X., and E.J. Cha. 2018. Modeling the damage and recovery of interdependent critical infrastructure systems from natural hazards. Reliability Engineering & System Safety 177: 162-175.
    [21]
    Herfort, B., S. Lautenbach, J. Porto de Albuquerque, J. Anderson, and A. Zipf. 2023. A spatio-temporal analysis investigating completeness and inequalities of global urban building data in OpenStreetMap. Nature Communications 14(1): Article 3985.
    [22]
    Hinkel, J., D. Lincke, A.T. Vafeidis, M. Perrette, R.J. Nicholls, R.S.J. Tol, B. Marzeion, and X. Fettweis et al. 2014. Coastal flood damage and adaptation costs under 21st century sea-level rise. Proceedings of the National Academy of Sciences 111(9): 3292-3297.
    [23]
    Holmes, J., and R. Weller. 2002. Design wind speeds for the Asia-Pacific region. Sydney: Standards Australia International Ltd.
    [24]
    Huang, B., J. Yang, A. Streltsov, K. Bradbury, L.M. Collins, and J.M. Malof. 2022. GridTracer: Automatic mapping of power grids using deep learning and overhead imagery. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 15: 4956-4970.
    [25]
    Huizinga, J., H. de Moel, and W. Szewczyk. 2017. Global flood depth-damage functions: Methodology and the database with guidelines. Sevilla: Joint Research Centre European Commission.
    [26]
    Knapp, K.R., M.C. Kruk, D.H. Levinson, H.J. Diamond, and C.J. Neumann. 2010. The International Best Track Archive for Climate Stewardship (IBTrACS): Unifying tropical cyclone data. Bulletin of the American Meteorological Society 91(3): 363-376.
    [27]
    Knutson, T., S.J. Camargo, J.C.L. Chan, K. Emanuel, C.-H. Ho, J. Kossin, M. Mohapatra, and M. Satoh et al. 2020. Tropical cyclones and climate change assessment: Part II: Projected response to anthropogenic warming. Bulletin of the American Meteorological Society 101(3): E303-E322.
    [28]
    Koks, E. 2022. Critical infrastructure and hazards. In Routledge handbook of environmental hazards and society, 1st edn, ed. T.K. McGee, and E.C. Penning-Rowsell. London: Routledge.
    [29]
    Koks, E., R. Pant, S. Thacker, and J.W. Hall. 2019. Understanding business disruption and economic losses due to electricity failures and flooding. International Journal of Disaster Risk Science 10(4): 421-438.
    [30]
    Koks, E., J. Rozenberg, C. Zorn, M. Tariverdi, M. Vousdoukas, S.A. Fraser, J.W. Hall, and S. Hallegatte. 2019. A global multi-hazard risk analysis of road and railway infrastructure assets. Nature Communications 10(1): Article 2677.
    [31]
    Lin, N. 2019. Tropical cyclones and heatwaves. Nature Climate Change 9(8): 579-580.
    [32]
    Mendelsohn, R., K. Emanuel, S. Chonabayashi, and L. Bakkensen. 2012. The impact of climate change on global tropical cyclone damage. Nature Climate Change 2(3): 205-209.
    [33]
    National Research Council. 2000. Risk analysis and uncertainty in flood damage reduction studies. Washington DC: National Academies Press.
    [34]
    Nicolas, C., J. Rentschler, A. Potter van Loon, S. Oguah, A. Schweikert, M. Deinert, E. Koks, and C. Arderne et al. 2019. Stronger power: Improving power sector resilience to natural hazards. Washington DC: World Bank.
    [35]
    Nirandjan, S., E.E. Koks, M. Ye, R. Pant, K.C.H. van Ginkel, J.C.J.H. Aerts, and P.J. Ward. 2024. Review article: Physical vulnerability database for critical infrastructure multi-hazard risk assessments—A systematic review and data collection. Natural Hazards and Earth System Sciences Discussions. https://doi.org/10.5194/nhess-2023-208.
    [36]
    Pescaroli, G., and D. Alexander. 2018. Understanding compound, interconnected, interacting, and cascading risks: A holistic framework. Risk Analysis 38(11): 2245-2257.
    [37]
    Rentschler, J., M. Obolensky, and M. Kornejew. 2019. Candle in the wind? Energy system resilience to natural shocks. Washington DC: World Bank Group Climate Change Group.
    [38]
    Senaratne, H., A. Mobasheri, A.L. Ali, C. Capineri, and M. Haklay. 2017. A review of volunteered geographic information quality assessment methods. International Journal of Geographical Information Science 31(1): 139-167.
    [39]
    Shield, S.A., S.M. Quiring, J.V. Pino, and K. Buckstaff. 2021. Major impacts of weather events on the electrical power delivery system in the United States. Energy 218: Article 119434.
    [40]
    Sirimanne, S., S.E. Kim, H.M.D. Li, and J. Nam. 2015. Overview of natural disasters and their impacts in Asia and the Pacific, 1970-2014. Bangkok: Information and Communications Technology and Disaster Risk Reduction Division of ESCAP.
    [41]
    Suppasri, A., E. Maly, M. Kitamura, G. Syamsidik, D.A. Pescaroli, and F. Imamura. 2021. Cascading disasters triggered by tsunami hazards: A perspective for critical infrastructure resilience and disaster risk reduction. International Journal of Disaster Risk Reduction 66: Article 102597.
    [42]
    Re, Swiss. 2017. Lights out: The risks of climate and natural disaster related disruption to the electric grid. Zurich: Swiss Reinsurance Company Ltd.
    [43]
    Thacker, S., D. Adshead, M. Fay, S. Hallegatte, M. Harvey, H. Meller, N. O’Regan, and J. Rozenberg et al. 2019. Infrastructure for sustainable development. Nature Sustainability 2(4): 324-331.
    [44]
    Tiggeloven, T., H. de Moel, H.C. Winsemius, D. Eilander, G. Erkens, E. Gebremedhin, A. Diaz Loaiza, and S. Kuzma et al. 2020. Global-scale benefit-cost analysis of coastal flood adaptation to different flood risk drivers using structural measures. Natural Hazards and Earth System Sciences 20(4): 1025-1044.
    [45]
    Tran, T.L., E.A. Ritchie, and S.E. Perkins-Kirkpatrick. 2022. A 50-year tropical cyclone exposure climatology in Southeast Asia. Journal of Geophysical Research: Atmospheres 127(4): Article e2021JD036301.
    [46]
    UNDRR (United Nations Office for Disaster Risk Reduction). 2016. Report of the open-ended intergovernmental expert working group on indicators and terminology relating to disaster risk reduction. Geneva: UNDRR.
    [47]
    van Ginkel, K.C.H., F. Dottori, L. Alfieri, L. Feyen, and E.E. Koks. 2021. Flood risk assessment of the European road network. Natural Hazards and Earth System Sciences 21(3): 1011-1027.
    [48]
    Ward, P.J., B. Jongman, F.S. Weiland, A. Bouwman, R. van Beek, M.F.P. Bierkens, W. Ligtvoet, and H.C. Winsemius. 2013. Assessing flood risk at the global scale: Model setup, results, and sensitivity. Environmental Research Letters 8(4): Article 044019.
    [49]
    Ward, P.J., B. Jongman, J.C.J.H. Aerts, P.D. Bates, W.J.W. Botzen, A. Diaz Loaiza, S. Hallegatte, and J.M. Kind et al. 2017. A global framework for future costs and benefits of river-flood protection in urban areas. Nature Climate Change 7(9): 642-646.
    [50]
    Ward, P.J., H.C. Winsemius, S. Kuzma, M.F.P. Bierkens, A. Bouwman, H.D. Moel, A.D. Loaiza, and D. Eilander et al. 2020. Aqueduct floods methodology. Washington DC: World Resources Institute.
    [51]
    Ward, P.J., J. Daniell, M. Duncan, A. Dunne, C. Hananel, S. Hochrainer-Stigler, A. Tijssen, and S. Torresan et al. 2022. Invited perspectives: A research agenda towards disaster risk management pathways in multi-(hazard-)risk assessment. Natural Hazards and Earth System Sciences 22(4): 1487-1497.
    [52]
    Winsemius, H.C., L.P.H. Van Beek, B. Jongman, P.J. Ward, and A. Bouwman. 2013. A framework for global river flood risk assessments. Hydrology and Earth System Sciences 17(5): 1871-1892.
    [53]
    Winsemius, H.C., J.C.J.H. Aerts, L.P.H. van Beek, M.F.P. Bierkens, A. Bouwman, B. Jongman, J.C.J. Kwadijk, and W. Ligtvoet et al. 2016. Global drivers of future river flood risk. Nature Climate Change 6(4): 381-385.
    [54]
    Ye, M., P. Ward, N. Bloemendaal, S. Nirandjan, and E. Koks. 2023. Electricity infrastructure and vulnerability database for power grid risk assessment. Zenodo. https://zenodo.org/records/7550620.
    [55]
    Yoshida, K., M. Sugi, R. Mizuta, H. Murakami, and M. Ishii. 2017. Future changes in tropical cyclone activity in high-resolution large-ensemble simulations. Geophysical Research Letters 44(19): 9910-9917.
    [56]
    Zio, E. 2016. Challenges in the vulnerability and risk analysis of critical infrastructures. Reliability Engineering & System Safety 152: 137-150.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (14) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return