Citation: | Chenchen Qiu, Lijun Su, Congchao Bian, Bo Zhao, Xueyu Geng. An AI-Based Method for Estimating the Potential Runout Distance of Post-Seismic Debris Flows[J]. International Journal of Disaster Risk Science, 2024, 15(4): 608-621. doi: 10.1007/s13753-024-00575-5 |
[1] |
Bergen, K.J., P.A. Johnson, M.V. de Hoop, and G.C. Beroza. 2019. Machine learning for data-driven discovery in solid Earth geoscience. Science 363(6433): Article eaau0323.
|
[2] |
Brouder, S.M., B.S. Hofmann, and D.K. Morris. 2005. Mapping soil pH: Accuracy of common soil sampling strategies and estimation techniques. Soil Science Society of America Journal 69(2): 427-442.
|
[3] |
Chai, T., and R.R. Draxler. 2014. Root mean square error (RMSE) or mean absolute error (MAE). Geoscientific Model Development Discussions 7(1): 1525-1534.
|
[4] |
Cheema, M.J.M., and W.G.M. Bastiaanssen. 2012. Local calibration of remotely sensed rainfall from the TRMM satellite for different periods and spatial scales in the Indus Basin. International Journal of Remote Sensing 33(8): 2603-2627.
|
[5] |
Chen, W., and Y. Li. 2020. GIS-based evaluation of landslide susceptibility using hybrid computational intelligence models. Catena 195: Article 104777.
|
[6] |
Chen, F.R., Y.Q. Gao, Y.G. Wang, and X. Li. 2020. A downscaling-merging method for high-resolution daily precipitation estimation. Journal of Hydrology 581: Article 124414.
|
[7] |
Crozier, M.J., and R.J. Eyles. 1980. Assessing the probability of rapid mass movement. In Proceedings of the 3rd Australia-New Zealand Conference on Geomechanics, ed. Technical groups, 2-47. Wellington, NZ: Institution of Professional Engineers New Zealand
|
[8] |
Dahlquist, M.P., and A.J. West. 2019. Initiation and runout of post-seismic debris flows: Insights from the 2015 Gorkha Earthquake. Geophysical Research Letters 46(16): 9658-9668.
|
[9] |
Falconi, L.M., L. Moretti, C. Puglisi, and G. Righini. 2023. Debris and mud flows runout assessment: A comparison among empirical geometric equations in the Giampilieri and Briga basins (east Sicily, Italy) affected by the event of October 1, 2009. Natural Hazards 117(3): 2347-2373.
|
[10] |
Fan, L.F., P. Lehmann, B. McArdell, and D. Or. 2017. Linking rainfall-induced landslides with debris flows runout patterns towards catchment scale hazard assessment. Geomorphology 280: 1-15.
|
[11] |
Gao, J.M., and Y.H. Sang. 2017. Identification and estimation of landslide-debris flow disaster risk in primary and middle school campuses in a mountainous area of Southwest China. International Journal of Disaster Risk Reduction 25: 60-71.
|
[12] |
Glade, T., M. Crozier, and P. Smith. 2000. Applying probability determination to refine landslide-triggering rainfall thresholds using an empirical “Antecedent Daily Rainfall Model”. Pure and Applied Geophysics 157: 1059-1079.
|
[13] |
Guo, X.J., P. Cui, and Y. Li. 2013. Debris flow warning threshold based on antecedent rainfall: A case study in Jiangjia Ravine, Yunnan, China. Journal of Mountain Science 10: 305-314.
|
[14] |
Guo, C.B., Y.S. Zhang, D.R. Montgomery, Y. Du, G.Z. Zhang, and S.H. Wang. 2016. How unusual is the long-runout of the earthquake-triggered giant Luanshibao landslide, Tibetan Plateau, China?. Geomorphology 259: 145-154.
|
[15] |
de Haas, T., and A.L. Densmore. 2019. Debris-flow volume quantile prediction from catchment morphometry. Geology 47(8): 791-794.
|
[16] |
Harris, R., A. Singleton, D. Grose, C. Brunsdon, and P. Longley. 2010. Grid-enabling geographically weighted regression: A case study of participation in higher education in England. Transactions in GIS 14(1): 43-61.
|
[17] |
Hodson, T.O., T.M. Over, and S.S. Foks. 2021. Mean squared error, deconstructed. Journal of Advances in Modeling Earth Systems 13(12): Article e2021MS002681.
|
[18] |
Horton, A.J., T.C. Hales, C.J. Ouyang, and X.M. Fan. 2019. Identifying post-earthquake debris flow hazard using mass flow. Engineering Geology 258: Article 105134.
|
[19] |
Hürlimann, M., R. Copons, and J. Altimir. 2006. Detailed debris flow hazard assessment in Andorra: A multidisciplinary approach. Geomorphology 78(3-4): 359-372.
|
[20] |
Hürlimann, M., D. Rickenmann, V. Medina, and A. Bateman. 2008. Evaluation of approaches to calculate debris-flow parameters for hazard assessment. Engineering Geology 102(3-4): 152-163.
|
[21] |
Iverson, R.M. 2014. Debris flows: Behaviour and hazard assessment. Geology Today 30(1): 15-20.
|
[22] |
Iverson, R.M., M.E. Reid, and R.G. LaHusen. 1997. Debris-flow mobilization from landslides. Annual Review of Earth and Planetary Sciences 25(1): 85-138.
|
[23] |
LeCun, Y., Y. Bengio, and G. Hinton. 2015. Deep learning. Nature 521(7533): 436-444.
|
[24] |
Lee, M. 2023. Mathematical analysis and performance evaluation of the GELU activation function in deep learning. Journal of Mathematics 2023: Article 4229924.
|
[25] |
Legros, F. 2002. The mobility of long-runout landslides. Engineering Geology 63: 301-331.
|
[26] |
Ma, Z.J., and G. Mei. 2021. Deep learning for geological hazards analysis: Data, models, applications, and opportunities. Earth-Science Reviews 223: Article 103858.
|
[27] |
Mahmud, M.R., M. Hashim, and M.N.M. Reba. 2017. How effective is the new generation of GPM satellite precipitation in characterizing the rainfall variability over Malaysia?. Asia-Pacific Journal of Atmospheric Sciences 53: 375-384.
|
[28] |
Marc, O., N. Hovius, P. Meunier, T. Gorum, and T. Uchida. 2016. A seismologically consistent expression for the total area and volume of earthquake-triggered landsliding. Journal of Geophysical Research: Earth Surface 121(4): 640-663.
|
[29] |
Parker, R.N., A.L. Densmore, N.J. Rosser, M. De Michele, Y. Li, R.Q. Huang, S. Whadcoat, and D.N. Petley. 2011. Mass wasting triggered by the 2008 Wenchuan Earthquake is greater than orogenic growth. Nature Geoscience 4(7): 449-452.
|
[30] |
Puglisi, C., L. Falconi, C. Gioè, and G. Leoni. 2015. Contribution to the runout evaluation of potential debris flows in Peloritani Mountains (Messina, Italy). In Engineering geology for society and territory—Volume 2: Landslide processes, ed. G. Lollino, D. Giordan, G.B. Crosta, J. Corominas, R. Azzam, J. Wasowski, and N. Sciarra, 509-513. Cham: Springer.
|
[31] |
Qiu, C.C., L.J. Su, Q. Zou, and X.Y. Geng. 2022. A hybrid machine-learning model to map glacier-related debris flow susceptibility along Gyirong Zangbo watershed under the changing climate. Science of the Total Environment 818: Article 151752.
|
[32] |
Reichstein, M., G. Camps-Valls, B. Stevens, M. Jung, J. Denzler, N. Carvalhais, and F. Prabhat. 2019. Deep learning and process understanding for data-driven Earth system science. Nature 566(7743): 195-204.
|
[33] |
Rickenmann, D. 1999. Empirical relationships for debris flows. Natural Hazards 19(1): 47-77.
|
[34] |
Sachindra, D.A., F. Huang, A. Barton, and B.J.C. Perera. 2013. Least square support vector and multi-linear regression for statistically downscaling general circulation model outputs to catchment streamflows. International Journal of Climatology 33(5): 1087-1106.
|
[35] |
Shieh, C.L., Y.S. Chen, Y.J. Tsai, and J.H. Wu. 2009. Variability in rainfall threshold for debris flow after the Chi-Chi earthquake in central Taiwan China. International Journal of Sediment Research 24(2): 177-188.
|
[36] |
Tang, C., T.W.J. Van Asch, M. Chang, G.Q. Chen, X.H. Zhao, and X.C. Huang. 2012. Catastrophic debris flows on 13 August 2010 in the Qingping area, southwestern China: The combined effects of a strong earthquake and subsequent rainstorms. Geomorphology 139-140: 559-576.
|
[37] |
Tang, C., J. Zhu, M. Chang, J. Ding, and X. Qi. 2012. An empirical-statistical model for predicting debris-flow runout zones in the Wenchuan Earthquake area. Quaternary International 250: 63-73.
|
[38] |
Tang, C., J. Zhu, J. Ding, X.F. Cui, L. Chen, and J.S. Zhang. 2011. Catastrophic debris flows triggered by a 14 August 2010 rainfall at the epicenter of the Wenchuan Earthquake. Landslides 8: 485-497.
|
[39] |
Tang, C., J. Zhu, W.L. Li, and J.T. Liang. 2009. Rainfall-triggered debris flows following the Wenchuan Earthquake. Bulletin of Engineering Geology and the Environment 68: 187-194.
|
[40] |
Tanyaş, H., D. Kirschbaum, T. Görüm, C.J. van Westen, C.X. Tang, and L. Lombardo. 2021. A closer look at factors governing landslide recovery time in post-seismic periods. Geomorphology 391: Article 107912.
|
[41] |
Trenberth, K.E., and D.J. Shea. 2005. Relationships between precipitation and surface temperature. Geophysical Research Letters 32: 1-4.
|
[42] |
Vegliante, G., V. Baiocchi, L.M. Falconi, L. Moretti, M. Pollino, C. Puglisi, and G. Righini. 2024. A GIS-based approach for shallow landslides risk assessment in the Giampilieri and Briga catchments areas (Sicily, Italy). GeoHazards 5(1): 209-232.
|
[43] |
Wang, H., F. Zang, C.Y. Zhao, and C.L. Liu. 2022. A GWR downscaling method to reconstruct high-resolution precipitation dataset based on GSMaP-Gauge data: A case study in the Qilian Mountains, Northwest China. Science of the Total Environment 810: Article 152066.
|
[44] |
Wilford, D.J., M.E. Sakals, J.L. Innes, R.C. Sidle, and W.A. Bergerud. 2004. Recognition of debris flow, debris flood and flood hazard through watershed morphometrics. Landslides 1: 61-66.
|
[45] |
Xiao, Z.K., C. Xu, Y.D. Huang, X.L. He, X.Y. Shao, Z.N. Chen, C.C. Xie, T. Li, and X.W. Xu. 2023. Analysis of spatial distribution of landslides triggered by the Ms 6.8 Luding Earthquake in China on September 5, 2022. Geoenvironmental Disasters 10(1): 1-15.
|
[46] |
Xiong, J., H.Y. Chen, L. Zeng, F.H. Su, L.F. Gong, and C.X. Tang. 2023. Coseismic landslide sediment increased by the “9.5” Luding Earthquake, Sichuan China. Journal of Mountain Science 20(3): 624-636.
|
[47] |
Yao, J.Q., Q. Yang, W.Y. Mao, Y. Zhao, and X.B. Xu. 2016. Precipitation trend-elevation relationship in arid regions of the China. Global and Planetary Change 143: 1-9.
|
[48] |
Zhang, J.Q., Z.J. Yang, Q.K. Meng, J. Wang, K.H. Hu, Y.G. Ge, F.H. Su, and B. Zhao et al. 2023. Distribution patterns of landslides triggered by the 2022 Ms 6.8 Luding Earthquake, Sichuan China. Journal of Mountain Science 20(3): 607-623.
|
[49] |
Zhang, S., L.M. Zhang, H.X. Chen, Q. Yuan, and H. Pan. 2013. Changes in runout distances of debris flows over time in the Wenchuan Earthquake zone. Journal of Mountain Science 10: 281-292.
|
[50] |
Zhou, W., J.Y. Fang, C. Tang, and G.Y. Yang. 2019. Empirical relationships for the estimation of debris flow runout distances on depositional fans in the Wenchuan Earthquake zone. Journal of Hydrology 577: Article 123932.
|