Citation: | Gema Velásquez-Espinoza, Irasema Alcántara-Ayala. Tropical Cyclones in Nicaragua: Historical Impact and Contemporary Exposure to Disaster Risk[J]. International Journal of Disaster Risk Science, 2024, 15(4): 579-593. doi: 10.1007/s13753-024-00581-7 |
[1] |
Alcántara-Ayala, I., I. Burton, A. Lavell, A. Oliver-Smith, A. Brenes, and T. Dickinson. 2023. Forensic investigations of disasters: Past achievements and new directions. Jàmbá: Journal of Disaster Risk Studies 15(1): Article 11.
|
[2] |
Alcántara-Ayala, I., C. Gomez, K. Chmutina, D. van Niekerk, E. Raju, V. Marchezini, J.R. Cadag, and J.C. Gaillard. 2023. Disaster risk. London: Taylor & Francis.
|
[3] |
Baumeister, E. 2006. International migration and development in Nicaragua (Migración internacional y desarrollo en Nicaragua). Santiago, Chile: CEPAL. https://www.ecampus.iom.int/pluginfile.php/10818/block_html/content/Nicaragua%20.pdf. Accessed 4 Mar 2024 (in Spanish).
|
[4] |
Betanco, B. 1979. Demographic analysis of Nicaragua (Análisis demográfico de Nicaragua). Master’s thesis. El colegio de México, Centro de Estudios Económicos y Demográficos, Managua, Nicaragua (in Spanish).
|
[5] |
Blaikie, P., T. Cannon, I.D. Davis, and B. Wisner. 1994. At risk: Natural hazards, people’s vulnerability and disasters. London: Routledge.
|
[6] |
Bro, A.S. 2020. Climate change adaptation, food security, and attitudes toward risk among smallholder coffee farmers in Nicaragua. Sustainability 12(17): Article 6946.
|
[7] |
Busso, G. 2002. Sociodemographic vulnerability in Nicaragua: A challenge for economic growth and poverty reduction (Vulnerabilidad sociodemográfica en Nicaragua: un desafío para el crecimiento económico y la reducción de la pobreza). https://hdl.handle.net/11362/7167. Accessed 4 Nov 2023.
|
[8] |
Cai, W., A. Santoso, M. Collins, B. Dewitte, C. Karamperidou, J.S. Kug, M. Lengaigne, and M.J. McPhaden et al. 2021. Changing El Niño-Southern Oscillation in a warming climate. Nature Reviews Earth & Environment 2(9): 628-644.
|
[9] |
Callahan, C.W., C. Chen, M. Rugenstein, J. Bloch-Johnson, S. Yang, and E.J. Moyer. 2021. Robust decrease in El Niño/Southern Oscillation amplitude under long-term warming. Nature Climate Change 11(9): 752-757.
|
[10] |
CCRIF (The Caribbean Catastrophe Risk Insurance Facility). 2017. Tropical Cyclone Nate (AL162017) wind and storm surge preliminary event report Nicaragua October 8, 2017 (Ciclón Tropical Nate (AL162017) Viento e Incremento de Marea Reporte Preliminar del Evento Nicaragua 8 de octubre de 2017). https://www.ccrif.org/sites/default/files/publications/eventreports/20171005_CCRIF_EventBriefing_TC-Nate_20171007_NIC_Final_Spanish.pdf. Accessed 23 Oct 2023 (in Spanish).
|
[11] |
Central America/Caribbean landfall probability calculations. n.d. https://ininet.org/central-americacaribbean-landfall-probability-calculations.html. Accessed 10 Aug 2023.
|
[12] |
CEPAL-BID. 2007. Information for disaster risk management (Información para la gestión de Riesgo de Desastres). Nicaragua: Estudio de caso de cinco países. https://repositorio.cepal.org/server/api/core/bitstreams/cff3c4fd-eb97-46c2-8570-119e34d30803/content. Accessed 10 Aug 2023 (in Spanish).
|
[13] |
Consorcio ERN América Latina. n.d. Probabilistic analysis of natural hazards and risks (Análisis Probabilista de Amenazas y Riesgos Naturales). Volume III. Review of important historical events (Revisión de eventos históricos importantes). Technical Report ERN-CAPRA-T2-1. https://ecapra.org/sites/default/files/documents/ERN-CAPRA-R7-T2-1%20-%20Eventos%20Hist%C3%B3ricos%20Importantes%20NIC.pdf. Accessed 3 Sept 2023 (in Spanish).
|
[14] |
DesInventar database. n.d. Web page. https://www.desinventar.net/. Accessed 1 Mar 2024.
|
[15] |
Ebi, K.L., J. Vanos, J.W. Baldwin, J.E. Bell, D.M. Hondula, N.A. Errett, K. Hayes, and C.E. Reid et al. 2021. Extreme weather and climate change: Population health and health system implications. Annual Review of Public Health 42(1): 293-315.
|
[16] |
Elsner, J.B., J.P. Kossin, and T.H. Jagger. 2008. The increasing intensity of the strongest tropical cyclones. Nature 455(7209): 92-95.
|
[17] |
Fernández-Partagás, J., and H.F. Diaz. 1996. Atlantic hurricanes in the second half of the nineteenth century. Bulletin of the American Meteorological Society 77(12): 2899-2906.
|
[18] |
Goldenberg, S.B., C.W. Landsea, A.M. Mestas-Nuñez, and W.M. Gray. 2001. The recent increase in Atlantic hurricane activity: Causes and implications. Science 293(5529): 474-479.
|
[19] |
Gray, W. 1984. Atlantic seasonal hurricane frequency. Part I: El Niño and 30 mb quasi-biennial oscillation influences. Monthly Weather Review 112(9): 1649-1668.
|
[20] |
Hsiang, S.M. 2010. Temperatures and cyclones strongly associated with economic production in the Caribbean and Central America. Proceedings of the National Academy of Sciences 107(35): 15367-15372.
|
[21] |
Incer, J., J. Wheelock, L. Cardenal, and A. Rodríguez. 2000. Natural disasters of Nicaragua: A guide to understand and prevent them (Desastres naturales de Nicaragua. Guía para conocerlos y prevenirlos). Managua, Nicaragua: Hispamer (in Spanish).
|
[22] |
INEC (Instituto Nacional de Estadísticas y Censo). 1975. Población volume III. Características Económicas. National census 1971 (Censo Nacionales 1971). Nicaragua: Población por Municipio (in Spanish).
|
[23] |
INEC (Instituto Nacional de Estadísticas y Censo). 1995. National Census 1995: Population, housing, agricultural module (Censos Nacionales 1995: Población, Vivienda, Modulo Agropecuario). Buenos Aires, Argentina: INEC (in Spanish).
|
[24] |
INETER (Instituto Nicaragüense de Estudios Territoriales). 1964-2020. Annual meteorological summary, precipitation (mm) (Resumen metrológico anual, precipitación (mm)). Managua, Nicaragua: INETER (in Spanish).
|
[25] |
INETER (Instituto Nicaragüense de Estudios Territoriales). 1998. Rains of the century in Nicaragua (Las lluvias del siglo en Nicaragua). Managua, Nicaragua: INETER (in Spanish).
|
[26] |
INIDE (Instituto Nacional de Información de Desarrollo). 2007. Statistical yearbook 2007 (Anuario Estadístico 2007). https://www.inide.gob.ni/Home/Anuarios. Accessed 10 Oct 2023 (in Spanish).
|
[27] |
INIDE (Instituto Nacional de Información de Desarrollo). 2019. Statistical yearbook 2019 (Anuario Estadístico 2019). https://www.inide.gob.ni/Home/Anuarios. Accessed 10 Oct 2023 (in Spanish).
|
[28] |
INIDE (Instituto Nacional de Información de Desarrollo). 2021. Statistical yearbook 2019 (Anuario Estadístico 2019). https://www.inide.gob.ni/Home/Anuarios. Accessed 10 Oct 2023 (in Spanish).
|
[29] |
IPCC (Intergovernmental Panel on Climate Change). 2022. Climate change 2022: Impacts, adaptation and vulnerability. Working Group II Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. https://www.ipcc.ch/report/ar6/wg2/. Accessed 22 Oct 2023.
|
[30] |
IPCC (Intergovernmental Panel on Climate Change). 2023. AR6 synthesis report: Climate change. https://www.ipcc.ch/report/ar6/syr/. Accessed 22 Oct 2023.
|
[31] |
Kaplan, J., and M. DeMaria. 1995. A simple empirical model for predicting the decay of tropical cyclone winds after landfall. Journal of Applied Meteorology and Climatology 34(11): 2499-2512.
|
[32] |
Klotzbach, P.J., and W. Gray. 2005. United States landfall probability webpage. http://hurricanepredictor.com/Methodology/USmethodology.pdf. Accessed 24 Jul 2023.
|
[33] |
Klotzbach, P.J., K.M. Wood, C.J. Schreck III, S.G. Bowen, C.M. Patricola, and M.M. Bell. 2022. Trends in global tropical cyclone activity: 1990-2021. Geophysical Research Letters 49(6): Article e2021GL095774.
|
[34] |
Knaff, J.A. 1997. Implications of summertime sea level pressure anomalies in the tropical Atlantic region. Journal of Climate 10(4): 789-804.
|
[35] |
Knutson, T.R., J.L. McBride, J. Chan, K. Emanuel, G. Holland, C. Landsea, I. Held, and J.P. Kossin et al. 2010. Tropical cyclones and climate change. Nature Geoscience 3(3): 157-163.
|
[36] |
Kossin, J.P., K.R. Knapp, T.L. Olander, and C.S. Velden. 2020. Global increase in major tropical cyclone exceedance probability over the past four decades. Proceedings of the National Academy of Sciences 117(22): 11975-11980.
|
[37] |
Kruk, M.C., E.J. Gibney, D.H. Levinson, and M.F. Squires. 2010. A climatology of inland winds from tropical cyclones for the eastern United States. Journal of Applied Meteorology and Climatology 49(7): 1538-1547.
|
[38] |
Landsea, C.W., and J.L. Franklin. 2013. Atlantic hurricane database uncertainty and presentation of a new database format. Monthly Weather Review 141(10): 3576-3592.
|
[39] |
Lau, Y.-Y., T.-L. Yip, M.A. Dulebents, Y.-M. Tang, and T.A. Kawasaki. 2022. A review of historical changes of tropical and extra-tropical cyclones: A comparative analysis of the United States, Europe, and Asia. International Journal of Environmental Research and Public Health 19(8): Article 4499.
|
[40] |
Lavell, A., M. Oppenheimer, C. Diop, J. Hess, R. Lempert, J. Li, R. Muir-Wood, and S. Myeong. 2012. Climate change: New dimensions in disaster risk, exposure, vulnerability, and resilience. In Managing the risks of extreme events and disasters to advance climate change adaptation: Special report of the Intergovernmental Panel on Climate Change, eds. C.B. Field, V. Barros, T.F. Stocker, D. Qin, D.J. Dokken, K.L. Ebi, M.D. Mastrandrea, and K.J. Mach et al., 25-64. Cambridge, UK: Cambridge University Press.
|
[41] |
Martínez, L., D. Romero, and E.J. Alfaro. 2023. Assessment of the spatial variation in the occurrence and intensity of major hurricanes in the Western Hemisphere. Climate 11(1): Article 15.
|
[42] |
Maskrey, A., and A. Lavell. 2023. The urbanisation of risk. In Urbicide: The death of the city, ed. F.C. Mena, and P.C. Pico, 235-261. Cham: Springer.
|
[43] |
Mendelsohn, R., K. Emanuel, S. Chonabayashi, and L. Bakkensen. 2012. The impact of climate change on global tropical cyclone damage. Nature Climate Change 2(3): 205-209.
|
[44] |
Myers, C.A., T. Slack, and J. Singelmann. 2008. Social vulnerability and migration in the wake of disaster: The case of Hurricanes Katrina and Rita. Population and Environment 29: 271-291.
|
[45] |
NCEI (National Centers for Environmental Information). n.d. https://www.ncei.noaa.gov/products/international-best-track-archive. Accessed 3 Aug 2023.
|
[46] |
Oliver-Smith, A., I. Alcántara-Ayala, I. Burton, and A. Lavell. 2016. Forensic investigations of disasters (FORIN). A conceptual framework and guide to research. Beijing: IRDR.
|
[47] |
Parker, L., C. Bourgoin, A. Martinez-Valle, and P. Läderach. 2019. Vulnerability of the agricultural sector to climate change: The development of a pan-tropical climate risk vulnerability assessment to inform sub-national decision making. PloS One 14(3): Article e0213641.
|
[48] |
Patricola, C.M., and M.F. Wehner. 2018. Anthropogenic influences on major tropical cyclone events. Nature 563(7731): 339-346.
|
[49] |
PNUD (Programa de las Naciones Unidas para el Desarrollo). 2000. Human development in Nicaragua: Equity to overcome vulnerability (El Desarrollo humano en Nicaragua: Equidad para supercar la vulnerabilidad). Managua, Nicaragua: Programa de las Naciones Unidas para el Desarrollo (in Spanish).
|
[50] |
Romanello, M., A. McGushin, C. Di Napoli, P. Drummond, N. Hughes, L. Jamart, H. Kennard, and P. Lampard et al. 2021. The 2021 report of the Lancet countdown on health and climate change: Code red for a healthy future. The Lancet 398(10311): 1619-1662.
|
[51] |
Saunders, M.A., R.E. Chandler, C.J. Merchant, and F.P. Roberts. 2000. Atlantic hurricanes and NW Pacific typhoons: ENSO spatial impacts on occurrence and landfall. Geophysical Research Letters 27(8): 1147-1150.
|
[52] |
SINAPRED (Sistema Nacional para la Prevención, Mitigación y Atención de Desastres). 2020. Final mission report: Hurricane Eta and Iota (Informe final de misión: Huracán Eta e Iota). Managua, Nicaragua: Centro de documentación del SINAPRED (in Spanish).
|
[53] |
Smith, E. 1999. Atlantic and east coast hurricanes 1900-98: A frequency and intensity study for the twenty-first century. Bulletin of the American Meteorological Society 80(12): 2717-2720.
|
[54] |
Sobel, A.H., S.J. Camargo, T.M. Hall, C.Y. Lee, M.K. Tippett, and A.A. Wing. 2016. Human influence on tropical cyclone intensity. Science 353(6296): 242-246.
|
[55] |
Tyner, B., A. Aiyyer, J. Blaes, and D.R. Hawkins. 2015. An examination of wind decay, sustained wind speed forecasts, and gust factors for recent tropical cyclones in the Mid-Atlantic region of the United States. Weather and Forecasting 30(1): 153-176.
|
[56] |
UNOSAT (The United Nations Satellite Centre). 2020. Satellite detected waters in Puerto Cabezas, Prinzapolka and Laguna de Perlas Municipality, Nicaragua, as of 8 November 2020. https://unosat.org/products/2965. Accessed 7 Aug 2023.
|
[57] |
Velásquez, G.E., and I. Alcántara-Ayala. 2023. The chronological account of the impact of tropical cyclones in Nicaragua between 1971 and 2020. AUC Geographica 58(1): 74-95.
|
[58] |
Walsh, K.J., J.L. McBride, P.J. Klotzbach, S. Balachandran, S.J. Camargo, G. Holland, T.R. Knutson, and J.P. Kossin et al. 2016. Tropical cyclones and climate change. Wiley Interdisciplinary Reviews: Climate Change 7(1): 65-89.
|
[59] |
Weinkle, J., R. Maue, and R. Pielke Jr. 2012. Historical global tropical cyclone landfalls. Journal of Climate 25(13): 4729-4735.
|
[60] |
Yap, W., Y. Lee, C. Gouramanis, A.D. Switzer, F. Yu, A.Y.A. Lau, and J.P. Terry. 2014. A historical typhoon database for the southern and eastern Chinese coastal regions, 1951 to 2012. Ocean and Coastal Management 108: 109-115.
|
[61] |
Zandbergen, P.A. 2008. Exposure of US counties to Atlantic tropical storms and hurricanes, 1851-2003. Natural Hazards 48(1): 83-99.
|