Citation: | Kaili Zhu, Zhaoli Wang, Chengguang Lai, Shanshan Li, Zhaoyang Zeng, Xiaohong Chen. Evaluating Factors Affecting Flood Susceptibility in the Yangtze River Delta Using Machine Learning Methods[J]. International Journal of Disaster Risk Science, 2024, 15(5): 738-753. doi: 10.1007/s13753-024-00590-6 |
[1] |
Abedi, R., R. Costache, H. Shafizadeh-Moghadam, and Q.B. Pham. 2021. Flash-flood susceptibility mapping based on XGBoost, random forest and boosted regression trees. Geocarto Internationa 37l: 5479-5496.
|
[2] |
Ahmadalipour, A., H. Moradkhani, A. Castelletti, and N. Magliocca. 2019. Future drought risk in Africa: integrating vulnerability, climate change, and population growth. Science of the Total Environment 662: 672-686.
|
[3] |
Ali, K.M., and M.J. Pazzani. 1995. On the link between error correlation and error reduction in decision tree ensembles. ICS Technical Report. University of California, Irvine, CA, USA.
|
[4] |
Arnbjerg-Nielsen, K. 2012. Quantification of climate change effects on extreme precipitation used for high resolution hydrologic design. Urban Water Journal 9(2): 57-65.
|
[5] |
Bador, M., J. Boé, L. Terray, L.V. Alexander, A. Baker, A. Bellucci, R. Haarsma, T. Koenigk, et al. 2020. Impact of higher spatial atmospheric resolution on precipitation extremes over land in global climate models. Journal of Geophysical Research: Atmospheres 125(13): Article e2019JD032184.
|
[6] |
Barton, M., and B. Lennox. 2022. Model stacking to improve prediction and variable importance robustness for soft sensor development. Digital Chemical Engineering 3: Article 100034.
|
[7] |
Casagrande, L., J. Tomasella, R.C. dos Santos Alvalá, M.J. Bottino, and R. de Oliveira Caram. 2017. Early flood warning in the Itajaí-Açu River basin using numerical weather forecasting and hydrological modeling. Natural Hazards 88(2): 741-757.
|
[8] |
Chen, J., G. Huang, and W. Chen. 2021. Towards better flood risk management: assessing flood risk and investigating the potential mechanism based on machine learning models. Journal of Environmental Management 293: Article 112810.
|
[9] |
Chen, J., Q. Li, H. Wang, and M. Deng. 2020. A machine learning ensemble approach based on random forest and radial basis function neural network for risk evaluation of regional flood disaster: a case study of the Yangtze River Delta, China. International Journal of Environmental Research and Public Health 17(1): Article 49.
|
[10] |
Chen, J., X. Shi, L. Gu, G. Wu, T. Su, H.-M. Wang, J.-S. Kim, L. Zhang, and L. Xiong. 2023. Impacts of climate warming on global floods and their implication to current flood defense standards. Journal of Hydrology 618: Article 129236.
|
[11] |
Chen, W., W. Wang, C. Mei, Y. Chen, P. Zhang, and P. Cong. 2024. Multi-objective decision-making for green infrastructure planning: impacts of rainfall characteristics and infrastructure configuration. Journal of Hydrology 628: Article 130572.
|
[12] |
Chen, X., H. Zhang, W. Chen, and G. Huang. 2021. Urbanization and climate change impacts on future flood risk in the Pearl River Delta under shared socioeconomic pathways. Science of the Total Environment 762: Article 143144.
|
[13] |
Choubin, B., E. Moradi, M. Golshan, J. Adamowski, F. Sajedi-Hosseini, and A. Mosavi. 2019. An ensemble prediction of flood susceptibility using multivariate discriminant analysis, classification and regression trees, and support vector machines. Science of the Total Environment 651(Part 2): 2087-2096.
|
[14] |
Devitt, L., J. Neal, G. Coxon, J. Savage, and T. Wagener. 2023. Flood hazard potential reveals global floodplain settlement patterns. Nature Communications 14(1): Article 2801.
|
[15] |
Dey, H., W. Shao, H. Moradkhani, B.D. Keim, and B.G. Peter. 2024. Urban flood susceptibility mapping using frequency ratio and multiple decision tree-based machine learning models. Natural Hazards 120: 10365-10393.
|
[16] |
Esmaili, R., and S.A. Karipour. 2024. Comparison of weighting methods of multicriteria decision analysis (MCDA) in evaluation of flood hazard index. Natural Hazards 120: 8619-8638.
|
[17] |
Fernández, D., and M.A. Lutz. 2010. Urban flood hazard zoning in Tucumán Province, Argentina, using GIS and multicriteria decision analysis. Engineering Geology 111(1-4): 90-98.
|
[18] |
Friedman, J.H. 2002. Stochastic gradient boosting. Computational Statistics & Data Analysis 38(4): 367-378.
|
[19] |
Gai, L., J.P. Nunes, J.E.M. Baartman, H. Zhang, F. Wang, A. de Roo, C.J. Ritsema, and V. Geissen. 2019. Assessing the impact of human interventions on floods and low flows in the Wei River Basin in China using the LISFLOOD model. Science of the Total Environment 653: 1077-1094.
|
[20] |
Guan, M., N. Sillanpää, and H. Koivusalo. 2015. Modelling and assessment of hydrological changes in a developing urban catchment. Hydrological Processes 29(13): 2880-2894.
|
[21] |
Han, L., Y. Xu, G. Pan, X. Deng, C. Hu, H. Xu, and H. Shi. 2015. Changing properties of precipitation extremes in the urban areas, Yangtze River Delta, China, during 1957-2013. Natural Hazards 79(1): 437-454.
|
[22] |
Hosni, M., F. Boushaba, and M. Chourak. 2024. A systematic literature review on classification machine learning for urban flood hazard mapping. Water Resources Management. https://doi.org/10.1007/s11269-024-03940-7.
|
[23] |
Huong, H.T.L., and A. Pathirana. 2013. Urbanization and climate change impacts on future urban flooding in Can Tho City, Vietnam. Hydrology and Earth System Sciences 17(1): 379-394.
|
[24] |
Iba, W., and P. Langley. 1992. Induction of one-level decision trees. In Machine learning proceedings 1992, ed. D. Sleeman, and P. Edwards, 233-240. Amsterdam: Elsevier.
|
[25] |
Jaafari, A., E.K. Zenner, and B.T. Pham. 2018. Wildfire spatial pattern analysis in the Zagros Mountains, Iran: a comparative study of decision tree based classifiers. Ecological Informatics 43: 200-211.
|
[26] |
Janizadeh, S., M. Vafakhah, Z. Kapelan, and N. Mobarghaee Dinan. 2021. Hybrid XGboost model with various Bayesian hyperparameter optimization algorithms for flood hazard susceptibility modeling. Geocarto International 37: 8273-8292.
|
[27] |
Kayitesi, N.M., A.C. Guzha, and G. Mariethoz. 2022. Impacts of land use land cover change and climate change on river hydro-morphology—a review of research studies in tropical regions. Journal of Hydrology 615: Article 128702.
|
[28] |
Kubiak, J., I. Laks, Z. Sroka, and Z. Walczak. 2024. Application of a multi-criteria decision support system for assessing development potential in flood risk areas—case study of the Warta River. Science of the Total Environment 947: Article 174513.
|
[29] |
Kundzewicz, Z.W., S. Kanae, S.I. Seneviratne, J. Handmer, N. Nicholls, P. Peduzzi, R. Mechler, and L.M. Bouwer et al. 2014. Flood risk and climate change: global and regional perspectives. Hydrological Sciences Journal 59(1): 1-28.
|
[30] |
Lai, C., H. Sun, X. Wu, J. Li, Z. Wang, H. Tong, and J. Feng. 2024. Water availability may not constrain vegetation growth in Northern Hemisphere. Agricultural Water Management 291: Article 108649.
|
[31] |
Li, Z., S. Gao, M. Chen, J.J. Gourley, C. Liu, A.F. Prein, and Y. Hong. 2022. The conterminous United States are projected to become more prone to flash floods in a high-end emissions scenario. Communications Earth & Environment 3(1): Article 86.
|
[32] |
Li, S., Z. Wang, C. Lai, and G. Lin. 2020. Quantitative assessment of the relative impacts of climate change and human activity on flood susceptibility based on a cloud model. Journal of Hydrology 588: Article 125051.
|
[33] |
Li, G.F., X.Y. Xiang, Y.Y. Tong, and H.M. Wang. 2013. Impact assessment of urbanization on flood risk in the Yangtze River Delta. Stochastic Environmental Research and Risk Assessment 27: 1683-1693.
|
[34] |
Liao, Y., Z. Wang, X. Chen, and C. Lai. 2023. Fast simulation and prediction of urban pluvial floods using a deep convolutional neural network model. Journal of Hydrology 624: Article 129945.
|
[35] |
Lin, K., H. Chen, C.-Y. Xu, P. Yan, T. Lan, Z. Liu, and C. Dong. 2020. Assessment of flash flood risk based on improved analytic hierarchy process method and integrated maximum likelihood clustering algorithm. Journal of Hydrology 584: Article 124696.
|
[36] |
Liu, H., L. Shang, M. Li, X. Zheng, and P. Shi. 2024. WRF numerical simulation of summer precipitation and its application over the mountainous southern Tibetan Plateau based on different cumulus parameterization schemes. Atmospheric Research 309: Article 107608.
|
[37] |
Long, Y., W. Chen, C. Jiang, Z. Huang, S. Yan, and X. Wen. 2023. Improving streamflow simulation in Dongting Lake Basin by coupling hydrological and hydrodynamic models and considering water yields in data-scarce areas. Journal of Hydrology: Regional Studies 47: Article 101420.
|
[38] |
Luo, P., D. Mu, H. Xue, T. Ngo-Duc, K. Dang-Dinh, K. Takara, D. Nover, and G. Schladow. 2018. Flood inundation assessment for the Hanoi Central Area, Vietnam under historical and extreme rainfall conditions. Scientific Reports 8(1): Article 12623.
|
[39] |
Lyu, H.-M., W.-H. Zhou, S.-L. Shen, and A.-N. Zhou. 2020. Inundation risk assessment of metro system using AHP and TFN-AHP in Shenzhen. Sustainable Cities and Society 56: Article 102103.
|
[40] |
Miller, J.D., H. Kim, T.R. Kjeldsen, J. Packman, S. Grebby, and R. Dearden. 2014. Assessing the impact of urbanization on storm runoff in a peri-urban catchment using historical change in impervious cover. Journal of Hydrology 515: 59-70.
|
[41] |
Murthy, S.K. 1998. Automatic construction of decision trees from data: a multi-disciplinary survey. Data Mining and Knowledge Discovery 2: 345-389.
|
[42] |
Myles, A.J., R.N. Feudale, Y. Liu, N.A. Woody, and S.D. Brown. 2004. An introduction to decision tree modeling. Journal of Chemometrics: A Journal of the Chemometrics Society 18(6): 275-285.
|
[43] |
Pradhan, B. 2013. A comparative study on the predictive ability of the decision tree, support vector machine and neuro-fuzzy models in landslide susceptibility mapping using GIS. Computers & Geosciences 51: 350-365.
|
[44] |
Pumo, D., E. Arnone, A. Francipane, D. Caracciolo, and L. Noto. 2017. Potential implications of climate change and urbanization on watershed hydrology. Journal of Hydrology 554: 80-99.
|
[45] |
Ren, Y., L. Zhang, and P.N. Suganthan. 2016. Ensemble classification and regression—recent developments, applications and future directions. IEEE Computational Intelligence Magazine 11(1): 41-53.
|
[46] |
Ro, B., and G. Garfin. 2024. Participatory risk governance for Seoul, South Korea’s flood risk management. International Journal of Disaster Risk Science 15(3): 317-331.
|
[47] |
Shah Heydari, S., J.C. Vogeler, O.S. Cardenas-Ritzert, S.K. Filippelli, M. McHale, and M. Laituri. 2024. Multi-tier land use and land cover mapping framework and its application in urbanization analysis in three African countries. Remote Sensing 16(14): Article 2677.
|
[48] |
Skougaard Kaspersen, P., N. Høegh Ravn, K. Arnbjerg-Nielsen, H. Madsen, and M. Drews. 2017. Comparison of the impacts of urban development and climate change on exposing European cities to pluvial flooding. Hydrology and Earth System Sciences 21(8): 4131-4147.
|
[49] |
Svetnik, V., A. Liaw, C. Tong, J.C. Culberson, R.P. Sheridan, and B.P. Feuston. 2003. Random forest: a classification and regression tool for compound classification and QSAR modeling. Journal of Chemical Information and Computer Sciences 43(6): 1947-1958.
|
[50] |
Tabari, H. 2021. Extreme value analysis dilemma for climate change impact assessment on global flood and extreme precipitation. Journal of Hydrology 593: Article 125932.
|
[51] |
Taghizadeh-Mehrjardi, R., K. Schmidt, A. Amirian-Chakan, T. Rentschler, M. Zeraatpisheh, F. Sarmadian, R. Valavi, N. Davatgar, et al. 2020. Improving the spatial prediction of soil organic carbon content in two contrasting climatic regions by stacking machine learning models and rescanning covariate space. Remote Sensing 12(7): Article 1095.
|
[52] |
Tang, X., H. Hong, Y. Shu, H. Tang, J. Li, and W. Liu. 2019. Urban waterlogging susceptibility assessment based on a PSO-SVM method using a novel repeatedly random sampling idea to select negative samples. Journal of Hydrology 576: 583-595.
|
[53] |
Wan, H., Z. Zhong, X. Yang, and X. Li. 2013. Impact of city belt in Yangtze River Delta in China on a precipitation process in summer: a case study. Atmospheric Research 125: 63-75.
|
[54] |
Wang, M., X. Fu, D. Zhang, F. Chen, M. Liu, S. Zhou, J. Su, and S.K. Tan. 2023. Assessing urban flooding risk in response to climate change and urbanization based on shared socio-economic pathways. Science of the Total Environment 880: Article 163470.
|
[55] |
Wolpert, D.H. 1992. Stacked generalization. Neural Networks 5(2): 241-259.
|
[56] |
Wu, C., C. Li, L. Ouyang, H. Xiao, J. Wu, M. Zhuang, X. Bi, and J. Li et al. 2023. Spatiotemporal evolution of urbanization and its implications to urban planning of the megacity, Shanghai, China. Landscape Ecology 38(4): 1105-1124.
|
[57] |
Yacouby, R., and D. Axman. 2020. Probabilistic extension of precision, recall, and f1 score for more thorough evaluation of classification models. In Proceedings of the First Workshop on Evaluation and Comparison of NLP Systems, 79-91, online. Association for Computational Linguistics. https://aclanthology.org/2020.eval4nlp-1.9.
|
[58] |
Yang, L., J.A. Smith, D.B. Wright, M.L. Baeck, G. Villarini, F. Tian, and H. Hu. 2013. Urbanization and climate change: an examination of nonstationarities in urban flooding. Journal of Hydrometeorology 14(6): 1791-1809.
|
[59] |
Yang, M.N., Y.P. Xu, G.B. Pan, and L.F. Han. 2014. Impacts of urbanization on precipitation in Taihu Lake Basin, China. Journal of Hydrologic Engineering 19(4): 739-746.
|
[60] |
Yin, S., G. Gao, Y. Li, Y.J. Xu, R.E. Turner, L. Ran, X. Wang, and B. Fu. 2023. Long-term trends of streamflow, sediment load and nutrient fluxes from the Mississippi River Basin: impacts of climate change and human activities. Journal of Hydrology 616: Article 128822.
|
[61] |
Zahura, F.T., J.L. Goodall, J.M. Sadler, Y. Shen, M.M. Morsy, and M. Behl. 2020. Training machine learning surrogate models from a high-fidelity physics-based model: application for real-time street-scale flood prediction in an urban coastal community. Water Resources Research 56(10): Article e2019WR027038.
|
[62] |
Zeng, Z., C. Lai, Z. Wang, Y. Chen, and X. Chen. 2024. Future sea level rise exacerbates compound floods induced by rainstorm and storm tide during super typhoon events: a case study from Zhuhai, China. Science of the Total Environment 911: Article 168799.
|
[63] |
Zhang, Z., X. Wang, Y. Zhang, Y. Gao, Y. Liu, X. Sun, J. Zhi, and S. Yin. 2023. Simulating land use change for sustainable land management in rapid urbanization regions: a case study of the Yangtze River Delta region. Landscape Ecology 38(7): 1807-1830.
|
[64] |
Zhang, Y., R. Yao, Z. Zhu, H. Jin, and S. Zhang. 2024. Spatiotemporal evolution of population exposure to multi-scenario rainstorms in the Yangtze River Delta urban agglomeration. Journal of Geographical Sciences 34(4): 654-680.
|
[65] |
Zhao, G., B. Pang, Z. Xu, D. Peng, and D. Zuo. 2020. Urban flood susceptibility assessment based on convolutional neural networks. Journal of Hydrology 590: Article 125235.
|
[66] |
Zhou, Q., G. Leng, J. Su, and Y. Ren. 2019. Comparison of urbanization and climate change impacts on urban flood volumes: importance of urban planning and drainage adaptation. Science of the Total Environment 658: 24-33.
|
[67] |
Zhou, F., Y. Xu, Y. Chen, C.-Y. Xu, Y. Gao, and J. Du. 2013. Hydrological response to urbanization at different spatio-temporal scales simulated by coupling of CLUE-S and the SWAT model in the Yangtze River Delta region. Journal of Hydrology 485: 113-125.
|
[68] |
Zhu, K., C. Lai, Z. Wang, and Z. Zeng. 2023. Temporal and spatial evolution characteristics of flood-season rainfall in the core urban agglomeration of the Yangtze River Delta under the background of urbanization. Water Resources Protection 39(6): 95-103.
|
[69] |
Zhu, K., C. Lai, Z. Wang, Z. Zeng, Z. Mao, and X. Chen. 2024. A novel framework for feature simplification and selection in flood susceptibility assessment based on machine learning. Journal of Hydrology: Regional Studies 52: Article 101739.
|