Yvonne Andersson-Sköld, Lars Nyberg. Effective and Sustainable Flood and Landslide Risk Reduction Measures: An Investigation of Two Assessment Frameworks[J]. International Journal of Disaster Risk Science, 2016, 7(4): 374-392. doi: 10.1007/s13753-016-0106-5
Citation: Yvonne Andersson-Sköld, Lars Nyberg. Effective and Sustainable Flood and Landslide Risk Reduction Measures: An Investigation of Two Assessment Frameworks[J]. International Journal of Disaster Risk Science, 2016, 7(4): 374-392. doi: 10.1007/s13753-016-0106-5

Effective and Sustainable Flood and Landslide Risk Reduction Measures: An Investigation of Two Assessment Frameworks

doi: 10.1007/s13753-016-0106-5
Funds:

This work was supported by the Swedish Civil Contingencies Agency (MSB), the Swedish Government through the Centre for Natural Disaster Science (CNDS) and the Faculty of Health, Science and Technology at Karlstad University. Thanks are due to the reference group of the project, to the participants in the focus group discussions, and the two anonymous reviewers of the manuscript.

  • Available Online: 2021-04-26
  • Natural events such as floods and landslides can have severe consequences. The risks are expected to increase, both as a consequence of climate change and due to increased vulnerabilities, especially in urban areas. Although preventive measures are often cost-effective, some measures are beneficial to certain values, while some may have negative impacts on other values. The aim of the study presented here was to investigate two frameworks used for assessing the effectiveness and sustainability of physical and nonphysical flood and landslide risk reduction measures. The study is based on literature, available information from authorities and municipalities, expert knowledge and experience, and stakeholder views and values. The results indicate that the risks for suboptimization or maladaptation are reduced if many aspects are included and a broad spectrum of stakeholders are involved. The sustainability assessment tools applied here can contribute to a more transparent and sustainable risk management process by assessing strategies and interventions with respect to both short- and long-term perspectives, including local impacts and wider environmental impacts caused by climate change, for example. The tools can also cover social and economic aspects. The assessment tools provide checklists that can support decision processes, thus allowing for more transparent decisions.
  • loading
  • Anderson, M.G., E. Holcombe, M. Esquivel, J. Toro, and F. Ghesquiere. 2010. The efficacy of a programme of landslide risk reduction in areas of unplanned housing in the Eastern Caribbean. Environmental Management 45(4): 807–821.
    Andersson-Sköld, Y., R. Bergman, M. Johansson, E. Persson, and L. Nyberg. 2013. Landslide risk management—A brief overview and example from Sweden of current situation and climate change. International Journal of Disaster Risk Reduction 3: 44–61.
    Andersson-Sköld, Y., P. Suer, R. Bergman, and H. Helgesson. 2014a. Sustainable decisions on the agenda—A decision support tool and its application on climate-change adaptation. Local Environment 21(1): 85–104.
    Andersson-Sköld, Y., S. Falemo, M. Tremblay. 2014b. Development of methodology for quantitative landslide risk assessment—Example Göta river valley. Natural Science 6(3): 130–143.
    Andersson-Sköld, Y., S. Thorsson, D. Rayner, F. Lindberg, S. Janhäll, A. Jonsson, U. Moback, R. Bergman, and M. Granberg. 2015. An integrated method for assessing climate-related risks and adaptation alternatives in urban areas. Climate Risk Management 7: 31–50.
    Bana e Costa, C.A., J.-M. De Corte, and J.-C. Vansnick. 2003. MACBETH. LSEOR 03.56. London: Department of Operational Research, London School of Economics and Political Science.
    Bana e Costa, C.A., J.-M. De Corte, and J.-C. Vansnick. 2012. MACBETH. International Journal of Information Technology & Decision Making 11(2): 359–387.
    Bana e Costa, C.A., P.A. Da Silva, and F.N. Cirreia. 2004. Multicriteria evaluation of flood control measures: The case of Riberia do Livramento. Water Resources Management 18(3): 263–283.
    Barnett, J., and S. O’Neill. 2010. Maladaptation. Global Environmental Change 20(2): 211–213.
    Bormann, H., R. van der Krogt, L. Adriaanse, F. Ahlhorn, R. Akkermans, Y. Andersson-Sköld, C. Gerrard, N. Houtekamer, G. de Lange, A. Norrby, N. van Oostrom, and R. Sutter. 2015. Guiding regional climate adaptation in coastal areas. In Handbook of climate change adaptation, ed. W.L. Filho, 337–357. London: Springer.
    Brooks, N. 2003. Vulnerability, risk and adaptation: A conceptual framework. Working paper 38. Norwich, UK: Tyndall Centre for Climate Change Research and Centre for Social and Economic Research on the Global Environment (CSERGE).
    Dai, F.C., C.F. Lee, and Y.Y. Ngai. 2002. Landslide risk assessment and management: An overview. Engineering Geology 64(1): 65–87.
    Ernst, J., B.J. Dewals, S. Detrembleur, P. Archambeau, S. Erpicum, and M. Pirotton. 2010. Micro-scale flood risk analysis based on detailed 2D hydraulic modelling and high resolution geographic data. Natural Hazards 55(2): 181–209.
    Gamper, C.D., and C. Turcanu. 2009. Can public participation help managing risks from natural hazards? Safety Science 47(4): 522–528.
    Glaas, E., A. Jonsson, M. Hjerpe, and Y. Andersson-Sköld. 2010. Managing climate change vulnerabilities: Formal institutions and knowledge use as determinants of adaptive capacity at the local level in Sweden. Local Environment 15(6): 525–539.
    Glavovic, B.C., W.S.A. Saunders, and J.S. Becker. 2010. Land-use planning for natural hazards in New Zealand: The setting, barriers, ‘burning issues’ and priority actions. Natural Hazards 54(3): 679–706.
    Goltermann, D., and J. Marengwa. 2012. SAWA Final Report summary, Hamburg. www.sawa-project.eu/uploads/documents/SAWA_Final_Report_Summary_%20draft25052012.pdf. Accessed 1 Oct 2016.
    Hinkel, J., R.J. Nicholls, A.T. Vafeidis, R.S.J. Tol, and T. Avagianou. 2010. Assessing risk of and adaptation to sea-level rise in the European Union: An application of DIVA. Mitigation and Adaptation Strategies for Global Change 15(7): 703–719.
    Holcombe, E., and M. Anderson. 2010. Tackling landslide risk: Helping land use policy to reflect unplanned housing realities in the Eastern Caribbean. Land Use Policy 27(3): 798–800.
    IPCC (Intergovernmental Panel on Climate Change). 2013. The physical science basis. Cambridge: Cambridge University Press.
    Ismail-Zadeh, A., and K. Takeuchi. 2007. Preventive disaster management of extreme natural events. Natural Hazards 42(3): 459–467.
    Johansson, A. 2013. Societal risk and safety management—Policy diffusion, management structures and perspectives at the municipal level in Sweden. PhD thesis, Karlstad University, Sweden.
    Johansson, A., I. Svedung, and R. Andersson. 2006. Management of risks in societal planning—An analysis of scope and variety of health, safety and security issues in municipality plan documents. Safety Science 44(8): 675–688.
    Johansson, M. 2008. Barriers and bridges—Communicative conditions in the Swedish environmental objective performance. Ph.D. thesis No. 469, Linköping Studies in Arts and Science, Linköping University, Sweden.
    Jonsson, A., I. Danielsson, and A. Jöborn. 2005. Designing a multipurpose methodology for strategic environmental research—The Rönneå catchment dialogues. AMBIO 34(7): 489–494.
    Jonsson, A., M. Hjerpe, Y. Andersson-Sköld, E. Glaas, K. André, and L. Simonsson. 2012. Cities’ capacity to manage climate vulnerability: Experiences from participatory vulnerability assessments in the lower Göta Älv catchment, Sweden. Local Environment 17(6–7): 735–750.
    Norén, V. 2016. When water becomes a threat—Risk assessment and risk management plans for floods and drinking water in Swedish practice. Ph.D thesis 1416, Uppsala University, Sweden.
    Nyberg, L., M. Evers, M. Dahlström, and A. Pettersson. 2014. Sustainability aspects of water regulation and flood risk reduction in Lake Vänern. Aquatic Ecosystem Health and Management 17(4): 331–340.
    Patterson, L., and M.W. Doyle. 2009. Assessing effectiveness of flood policy application through spatiotemporal monitoring of socioeconomic exposure. Journal of the American Water Resources Association 45(2): 237–252.
    Plate, E.J. 2007. Flood risk management for setting priorities in decision making. In Extreme hydrological events: New concepts for security, ed. O.F. Vasiliev, P.H.A.J.M. van Gelder, E.J. Plate, and M.V. Bolgov, 21–44. The Netherlands: Springer.
    Poussin, J.K., P. Bubeck, J.C.-H. Aerts, and P.J. Ward. 2012. Potential of semi-structural and non-structural adaptation strategies to reduce future flood risk: case study for the Meuse. Natural Hazards and Earth System Sciences 12: 3455–3471.
    Renn, O. 2005. Risk governance: Towards an integrative approach. Geneva: International Risk Governance Council.
    Roberts, N.J., F. Nadim, and B. Kalsnes. 2009. Quantification of vulnerability to natural hazards. Georisk: Assessment and Management of Risk for Engineered Systems and Geohazards 3(3): 164–173.
    Sarewitz, D., R. Pielke Jr., and M. Keykhah. 2003. Vulnerability and risk: Some thoughts from a political and policy perspective. Risk Analysis 23(4): 805–810.
    Schuster, R.L., and L.M. Highland. 2007. The third Hans Cloos lecture. Urban landslides: Socioeconomic impacts and overview of mitigative strategies. Bulletin of Engineering Geology and the Environment 66(1): 1–27.
    Sharma, U., A. Scolobig, and A. Patt. 2012. The effects of decentralization on the production and use of risk assessment: Insights from landslide management in India and Italy. Natural Hazards 64(2): 1357–1371.
    Singh, A.K. 2010. Landslide management: Concept and philosophy. Disaster Prevention and Management: An International Journal 19(1): 119–134.
    Srivastava, R., and L. Laurian. 2006. Natural hazard mitigation in local comprehensive plans: The case of flood, wildfire and drought planning in Arizona. Disaster Prevention and Management: An International Journal 15(3): 461–483.
    Suh, J., Y. Choi, T.D. Roh, H.J. Lee, and H.D. Park. 2011. National-scale assessment of landslide susceptibility to rank the vulnerability to failure of rock-cut slopes along expressways in Korea. Environmental Earth Sciences 63(3): 619–632.
    UNISDR (United Nations International Strategy for Disaster Reduction). 2005. Hyogo framework for action 2005–2015: Building the resilience of nations and communities to disasters. Geneva: UNISDR.
    UNISDR (United Nations International Strategy for Disaster Reduction). 2015. Sendai framework for disaster risk reduction 2015–2030. Geneva: UNISDR.
    Volchko, Y., J. Norrman, L. Rosén, M. Bergknut, T. Söderqvist, T. Norberg, S. Josefsson, K. Wiberg, and M. Tysklind. 2014. Using soil function evaluation in multi criteria decision analysis for sustainability appraisal of remediation alternatives. Science of the Total Environment 485–486: 785–791.
    Zeng, J., Z.Y. Zhu, J.L. Zhang, T.P. Ouyang, S.F. Qiu, Y. Zou, and T. Zeng. 2012. Social vulnerability assessment of natural hazards on county-scale using high spatial resolution satellite imagery: A case study in the Luogang district of Guangzhou, South China. Environmental Earth Sciences 65(1): 173–182.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (60) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return