Citation: | Mahdi Farnaghi, Zeinab Ghaemi, Ali Mansourian. Dynamic Spatio-Temporal Tweet Mining for Event Detection: A Case Study of Hurricane Florence[J]. International Journal of Disaster Risk Science, 2020, 11(3): 378-393. doi: 10.1007/s13753-020-00280-z |
Arcaini, P., G. Bordogna, D. Ienco, and S. Sterlacchini. 2016. User-driven geo-temporal density-based exploration of periodic and not periodic events reported in social networks. Information Sciences 340–341: 122–143.
|
Benhardus, J., and J. Kalita. 2013. Streaming trend detection in twitter. International Journal of Web Based Communities 9(1): 122–139.
|
Ben-Lhachemi, N., and E.H. Nfaoui. 2018. Using tweets embeddings for hashtag recommendation in twitter. Procedia Computer Science 127: 7–15.
|
Bifet, A. 2010. Adaptive stream mining: Pattern learning and mining from evolving data streams. Amsterdam: IOS Press.
|
Bojanowski, P., E. Grave, A. Joulin, and T. Mikolov. 2017. Enriching word vectors with subword information. Transactions of the Association for Computational Linguistics 5: 135–146.
|
Capdevila, J., J. Cerquides, J. Nin, and J. Torres. 2017. Tweet-SCAN: An event discovery technique for geo-located tweets. Pattern Recognition Letters 93: 58–68.
|
Cheng, T., and T. Wicks. 2014. Event detection using twitter: A spatio-temporal approach. PloS One 9(6): Article e97807.
|
Croitoru, A., N. Wayant, A. Crooks, J. Radzikowski, and A. Stefanidis. 2015. Linking cyber and physical spaces through community detection and clustering in social media feeds. Computers, Environment and Urban Systems 53: 47–64.
|
Cui, W., P. Wang, Y. Du, X. Chen, D. Guo, J. Li, and Y. Zhou. 2017. An algorithm for event detection based on social media data. Neurocomputing 254: 53–58.
|
Ester, M., H.-P. Kriegel, J. Sander, and X. Xu. 1996. A density-based algorithm for discovering clusters in large spatial databases with noise. In Proceedings of the international conference on knowledge discovery and data mining, 226–231, 2-4 August 1996, Portland, OR, USA.
|
Farnaghi, M., and A. Mansourian. 2013. Disaster planning using automated composition of semantic OGC web services: A case study in sheltering. Computers, Environment and Urban Systems 41: 204–218.
|
Fócil-Arias, C., J. Zúñiga, G. Sidorov, I. Batyrshin, and A. Gelbukh. 2017. A tweets classifier based on cosine similarity. Working notes of CLEF 2017—Conference and Labs of the Evaluation Forum, Dublin, Ireland, 11-14 September 2017.
|
Ghaemi, Z., and M. Farnaghi. 2019. A varied density-based clustering approach for event detection from heterogeneous twitter data. ISPRS International Journal of Geo-Information 8(2): Article 82.
|
Guerra, L., V. Robles, C. Bielza, and P. Larrañaga. 2012. A comparison of clustering quality indices using outliers and noise. Intelligent Data Analysis 16(4): 703–715.
|
Hasan, M., M.A. Orgun, and R. Schwitter. 2018. A survey on real-time event detection from the Twitter data stream. Journal of Information Science 44(4): 443–463.
|
Hecht, B., L. Hong, B. Suh, and E.H. Chi. 2011. Tweets from Justin Bieber’s heart: The dynamics of the “location” field in user profiles. In Proceedings of the ACM CHI annual conference on human factors in computing systems, 237–246, 7-12 May 2011, Vancouver, BC, Canada.
|
Huang, Q., and Y. Xiao. 2015. Geographic situational awareness: Mining tweets for disaster preparedness, emergency response, impact, and recovery. ISPRS International Journal of Geo-Information 4(3): 1549–1568.
|
Huang, Y., Y. Li, and J. Shan. 2018. Spatial-temporal event detection from geotagged tweets. ISPRS International Journal of Geo-Information 7(4): Article 150.
|
Idrissi, A., H. Rehioui, A. Laghrissi, and S. Retal. 2015. An improvement of DENCLUE algorithm for the data clustering. In Proceedings of the 2015 5th International Conference on Information & Communication Technology and Accessibility (ICTA), 21-23 December 2015, Marrakech, Morocco. IEEE. https://doi.org/10.1109/icta.2015.7426936.
|
Joshi, A., and R. Kaur. 2013. A review: Comparative study of various clustering techniques in data mining. International Journal of Advanced Research in Computer Science and Software Engineering 3(3): 55–57.
|
Kaleel, S.B., and A. Abhari. 2015. Cluster-discovery of twitter messages for event detection and trending. Journal of Computational Science 6: 47–57.
|
Kirilenko, A.P., and S.O. Stepchenkova. 2017. Sochi 2014 Olympics on twitter: Perspectives of hosts and guests. Tourism Management 63: 54–65.
|
Krajewski, W.F., D. Ceynar, I. Demir, R. Goska, A. Kruger, C. Langel, R. Mantilla, J. Niemeier, et al. 2016. Real-time flood forecasting and information system for the State of Iowa. Bulletin of the American Meteorological Society 98(3): 539–554.
|
Lee, C.-H. 2012. Mining spatio-temporal information on microblogging streams using a density-based online clustering method. Expert Systems with Applications 39(10): 9623–9641.
|
Lee, K., D. Palsetia, R. Narayanan, M.M.A. Patwary, A. Agrawal, and A.N. Choudhary. 2011. Twitter trending topic classification. In Proceedings of the 11th IEEE international conference on data mining workshops, 251–258, 11 December 2011, Vancouver, BC, Canada.
|
Liu, P., D. Zhou, and N. Wu. 2007. VDBSCAN: Varied density based spatial clustering of applications with noise. In Proceedings of the 2007 international conference on service systems and service management, 1-4, 9-11 June 2007, Chengdu, China.
|
Mary, S.A.L., A.N. Sivagami, and M.U. Rani. 2015. Cluster validity measures dynamic clustering algorithms. ARPN Journal of Engineering and Applied Sciences 10(9): 4009–4012.
|
Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. In Proceedings of the 1st international conference on learning representations, 1-12, 2-4 May 2013, Scottsdale, AZ, USA.
|
Morchid, M., Y. Portilla, D. Josselin, R. Dufour, E. Altman, M. El-Beze, J.-V. Cossu, G. Linarès, and A. Reiffers-Masson. 2015. An author-topic based approach to cluster tweets and mine their location. Procedia Environmental Sciences 27: 26–29.
|
Nguyen, M.D, and W.-Y. Shin. 2017. DBSTexC: Density-based spatio-textual clustering on twitter. In Proceedings of the 9th IEEE/ACM international conference on advances in social networks analysis and mining, 23–26, 31 July-3 August 2017, Sydney, Australia.
|
Nguyen, T., M.E. Larsen, B. O’Dea, D.T. Nguyen, J. Yearwood, D. Phung, S. Venkatesh, and H. Christensen. 2017. Kernel-based features for predicting population health indices from geocoded social media data. Decision Support Systems 102: 22–31.
|
Niederkrotenthaler, T., B. Till, and D. Garcia. 2019. Celebrity suicide on twitter: Activity, content and network analysis related to the death of Swedish DJ Tim Bergling alias Avicii. Journal of Affective Disorders 245: 848–855.
|
Parimala, M., D. Lopez, and N.C. Senthilkumar. 2011. A survey on density based clustering algorithms for mining large spatial databases. International Journal of Advanced Science and Technology 31(1): 59–66.
|
Pennington, J., R. Socher, and C. Manning. 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on Empirical Methods in Natural Language Processing (EMNLP), 1532–1543, 25–29 October 2014, Doha, Qatar.
|
Phelan, O., K. McCarthy, and B. Smyth. 2009. Using twitter to recommend real-time topical news. In Proceedings of the 2009 ACM conference on recommender systems, 385–388, 23-25 October 2009, New York, NY, USA.
|
Reddy, B.G.O., and M. Ussenaiah. 2012. Literature survey on clustering techniques. IOSR Journal of Computer Engineering 3(1): 1–50.
|
Rousseeuw, P.J. 1987. Silhouettes: A graphical aid to the interpretation and validation of cluster analysis. Journal of Computational and Applied Mathematics 20: 53–65.
|
Sander, J., M. Ester, H.-P. Kriegel, and X. Xu. 1998. Density-based clustering in spatial databases: The algorithm GDBSCAN and its applications. Data Mining and Knowledge Discovery 2(2): 169–194.
|
Schubert, E., and M. Gertz. 2018. Improving the cluster structure extracted from OPTICS plots. In Proceedings of the conference “lernen, wissen, daten, analysen”, 318–329, 22-24 August 2018, Mannheim, Germany.
|
Schubert, E., J. Sander, M. Ester, H.P. Kriegel, and X. Xu. 2017. DBSCAN revisited, revisited: Why and how you should (still) use DBSCAN. ACM Transactions on Database Systems 42(3): Article 19.
|
Sit, M.A., C. Koylu, and I. Demir. 2019. Identifying disaster-related tweets and their semantic, spatial and temporal context using deep learning, natural language processing and spatial analysis: A case study of Hurricane Irma. International Journal of Digital Earth 12(11): 1205–1229.
|
Srijith, P.K., M. Hepple, K. Bontcheva, and D. Preotiuc-Pietro. 2017. Sub-story detection in twitter with hierarchical Dirichlet processes. Information Processing & Management 53(4): 989–1003.
|
Steiger, E., B. Resch, and A. Zipf. 2016. Exploration of spatiotemporal and semantic clusters of Twitter data using unsupervised neural networks. International Journal of Geographical Information Science 30(9): 1694–1716.
|
Steiger, E., R. Westerholt, B. Resch, and A. Zipf. 2015. Twitter as an indicator for whereabouts of people? Correlating twitter with UK census data. Computers, Environment and Urban Systems 54: 255–265.
|
Sutton, J., S.C. Vos, M.K. Olson, C. Woods, E. Cohen, C.B. Gibson, N.E. Phillips, J.L. Studts, et al. 2018. Lung cancer messages on twitter: Content analysis and evaluation. Journal of the American College of Radiology 15(1): 210–217.
|
Teh, Y.W., M.I. Jordan, M.J. Beal, and D.M. Blei. 2006. Hierarchical Dirichlet processes. Journal of the American Statistical Association 101(476): 1566–1581.
|
Vijayarani, S., and P. Jothi. 2014. Partitioning clustering algorithms for data stream outlier detection. International Journal of Innovative Research in Computer and Communication Engineering 2(4): 3975–3981.
|
Walther, M., and M. Kaisser. 2013. Geo-spatial event detection in the twitter stream. In Proceedings of the 35th European conference on advances in information retrieval, ECIR 2013, 356–367, 24-27 March 2013, Moscow, Russia.
|
Wang, Z., X. Ye, and M.-H. Tsou. 2016. Spatial, temporal, and content analysis of Twitter for wildfire hazards. Natural Hazards 83(1): 523–540.
|
Yang, W., and L. Mu. 2015. GIS analysis of depression among twitter users. Applied Geography 60: 217–223.
|