Citation: | Patrick D. Royer, Wei Du, Kevin Schneider. Rapid Evaluation and Response to Impacts on Critical End-Use Loads Following Natural Hazard-Driven Power Outages: A Modular and Responsive Geospatial Technology[J]. International Journal of Disaster Risk Science, 2022, 13(3): 415-434. doi: 10.1007/s13753-022-00413-6 |
Aigner, W., S. Miksch, W. Müller, H. Schumann, and C. Tominski. 2008. Visual methods for analyzing time-oriented data. IEEE Transactions on Visualization and Computer Graphics 14(1):47-60.
|
Akker, J.D. 2014. Fault location, isolation, and service restoration technologies reduce outage impact and duration. Addis Ababa, Ethiopia:Ministry of Health, Federal Democratic Republic of Ethiopia.
|
Alam, M.M., Z. Zhu, E.B. Tokgoz, J. Zhang, and S. Hwang. 2020. Automatic assessment and prediction of the resilience of utility poles using unmanned aerial vehicles and computer vision techniques. International Journal of Disaster Risk Science 11(1):119-132.
|
Codd, E.F. 1979. Extending the database relational model to capture more meaning. ACM Transactions on Database Systems 4(4):397-434.
|
Dobson, J., E. Bright, P. Coleman, R. Durfee, and B. Worley. 2000. LandScan:A global population database for estimating populations at risk. Photogrammetric Engineering and Remote Sensing 66(7):849-857.
|
Granell, C., and F.O. Ostermann. 2016. Beyond data collection:Objectives and methods of research using VGI and geo-social media for disaster management. Computers, Environment and Urban Systems 59:231-243.
|
Hammer, M., and D. McLeod. 1978. The semantic data model:A modeling mechanism for data base applications. In Proceedings of the 1978 ACM SIGMOD International Conference on Management of Data, 31 May 1978-2 June 1978, Austin, Texas, USA, 26-36.
|
Han, S., D. Guikema, and S.M. Quiring. 2009. Improving the predictive accuracy of hurricane power outage forecasts using generalized additive models. Risk Analysis 29(10):1443-1453.
|
Heydt, G., and T.J. Graf. 2010. Distribution system reliability evaluation using enhanced samples in a Monte Carlo approach. IEEE Transactions on Power Systems 25(4):2006-2008.
|
Jeffers, R.F., M.J. Baca, A.M. Wachtel, S. Derosa, A. Staid, W. Fogleman, A. Outkin, and F. Currie. 2018. Analysis of microgrid locations benefitting community resilience for Puerto Rico. Technical report. Albuquerque, New Mexico:Sandia National Laboratory.
|
Keim, D.A. 2002. Visual exploration of large data sets. Communications of the ACM 8(1):1-8.
|
Lam, N.S.-N., Y. Qiang, H. Arenas, P. Brito, and K.B. Liu. 2015. Mapping and assessing coastal resilience in the Caribbean region. Cartography and Geographic Information Science 42(4):315-322.
|
Mensah, A.F., and L. Dueñas-Osorio. 2016. Efficient resilience assessment framework for electric power systems affected by hurricane events. Journal of Structural Engineering.. Mensah, A.F., and L. Dueñas-Osorio. 2016. Efficient resilience assessment framework for electric power systems affected by hurricane events. Journal of Structural Engineering. https://doi.org/10.1061/(ASCE)ST.1943-541X.0001423.
|
Mukherjee, S., R. Nateghi, and M. Hastak. 2018. A multi-hazard approach to assess severe weather-induced major power outage risks in the U.S. Reliability Engineering and System Safety 175(C):283-305.
|
Nateghi, R., S. Guikema, and S.M. Quiring. 2014. Power outage estimation for tropical cyclones:Improved accuracy with simpler models. Risk Analysis 34(6):1069-1078.
|
NOAA (National Oceanic and Atmospheric Administration). 2020. U.S. billion-dollar weather and climate disasters, 1980-present. Asheville, NC:NOAA National Centers for Environmental Information.
|
Ofli, F., P. Meier, M. Imran, C. Castillo, D. Tuia, N. Rey, J. Briant, and P. Millet et al. 2016. Combining human computing and machine learning to make sense of Big (Aerial) Data for disaster response. Big Data 4(1):47-59.
|
Ouyang, M., and L. Dueñas-Osorio. 2014. Multi-dimensional hurricane resilience assessment of electric power systems. Structural Safety 48:15-24.
|
Riley, S.J., S.D. DeGloria, and R. Elliot. 1999. A terrain ruggedness index that quantifies topographic heterogeneity. Intermountain Journal of Sciences 5(1-4):23-27.
|
Rudin, C., S. Ertekin, R. Passonneau, A. Radeva, A. Tomar, B. Xie, S. Lewis, and M. Riddle et al. 2014. Analytics for power grid distribution reliability in New York City. Informs Journal on Applied Analysis 44(4):364-383.
|
Staid, A., S.D. Guikema, R. Nateghi, S.M. Quiring, and M.Z. Gao. 2014. Simulation of tropical cyclone impacts to the U. S. power system under climate change scenarios. Climatic Change 127(3):535-546.
|
Tokgoz, B., M. Safa, and S. Hwang. 2017. Resilience assessment for power distribution systems. International Journal of Civil and Environmental Engineering 11(7):806-811.
|
U.S. Environmental Protection Agency. 2016. Climate change indicators:Weather and climate. https://www.epa.gov/climate-indicators/weather-climate. Accessed 2 Feb 2020.
|
Van, S.B., B.N. Judson, S.V.T. Nguyen, and W.D. Ross. 2012. Microgrid study:Energy security for DoD installations. Technical report 1164. Cambridge, MA:Lincoln Laboratory, Massachusetts Institute of Technology.
|
Voigt, V., T. Kemper, T. Riedlinger, R. Kiefl, K. Scholte, and H. Mehl. 2007. Satellite image analysis for disaster and crisis-management support. IEEE Transactions on Geoscience and Remote Sensing 45(6):1520-1528.
|
Vugrin, E., D. Warren, and M.A. Ehlen. 2011. A resilience assessment framework for infrastructure and economic systems:Quantitative and qualitative resilience analysis of petrochemical supply chains to a hurricane. Process Safety Progress 30(3):280-290.
|
Vyron, A., and C. Potsiou. 2020. A deep learning method to accelerate the disaster response process. Remote Sensing 12(3):Article 544.
|
Weems, C.F., S.E. Watts, M.A. Marsee, L.K. Taylor, N.M. Costa, M.F. Cannon, V.G. Carrion, and A. Pina. 2007. The psychosocial impact of Hurricane Katrina:Contextual differences in psychological symptoms, social support, and discrimination. Behaviour Research and Therapy 45(10):2295-2306.
|
Wood, A.J., and B.F. Wollenberg. 1996. Power generation, operation, and control, 2nd edn. New York:John Wiley & Sons.
|
Wong, P.C., K. Schneider, P. MacKey, H. Foote, G. Chin, R. Guttromson, and J. Thomas. 2009. A novel visualization technique for electric power grid analytics. IEEE Transactions on Visualization and Computer Graphics 15(3):410-423.
|
Yang, F., D.W. Wanik, D. Cerrai, M. Bhuiyan, and E.N. Anagnostou. 2020. Quantifying uncertainty in machine learning-based power outage prediction model training:A tool for sustainable storm restoration. Sustainability 12(4):Article 1525.
|
Yi, J., Y. Kang, J.T. Stasko, and J.A. Jacko. 2007. Toward a deeper understanding of the role of interaction in information visualization. IEEE Transactions on Visualization and Computer Graphics 13(6):1224-1231.
|
Zhai, C., T. Chen, A. White, and S. Guikema. 2021. Power outage prediction for natural hazards using synthetic power distribution systems. Reliability Engineering & System Safety 208:Article 107348.
|
Zhang, L., and J. Yi. 2010. Management methods of spatial data based on PostGIS. In Proceedings of 2010 2nd Pacific-Asia Conference on Circuits, Communications and System, 1-2 August 2010, Beijing, China, 410-413.
|
Zimmerman, R., and C.E. Restrepo. 2009. Analyzing cascading effects within infrastructure sectors for consequence reduction. Proceedings of the 2009 IEEE Conference on Technologies for Homeland Security, 11-12 May 2009, Waltham, Massachusetts, United States, 157-162.
|