Citation: | Yan Yan, Jiaojiao Zhou, Cheng Xie, Shuyao Yin, Sheng Hu, Renchao Wang. Quantitative Estimation of Pipeline Slope Disaster Risk in China[J]. International Journal of Disaster Risk Science, 2023, 14(2): 298-312. doi: 10.1007/s13753-023-00462-5 |
[1] |
Almahakeri, M., I.D. Moore, and A. Fam. 2019. Numerical techniques for design calculations of longitudinal bending in buried steel pipes subjected to lateral earth movements. Royal Society Open Science 6(7):Article 181550.
|
[2] |
Alvarado-Franco, J.P., D. Castro, N. Estrada, B. Caicedo, M. Sánchez-Silva, L.A. Camacho, and F. Muñoz. 2017. Quantitative-mechanistic model for assessing landslide probability and pipeline failure probability due to landslides. Engineering Geology 222(16):212-224.
|
[3] |
An, H., C. Ouyang, C. Zhao, and W. Zhao. 2020. Landslide dynamic process and parameter sensitivity analysis by discrete element method:The case of Turnoff Creek rock avalanche. Journal of Mountain Science 17(1):1581-1595.
|
[4] |
Bar, N., M. Kostadinovski, M. Tucker, G. Byng, R. Rachmatullah, A. Maldonado, and T. Yacoub. 2020. Rapid and robust slope failure appraisal using aerial photogrammetry and 3D slope stability models. International Journal of Mining Science and Technology 30(5):651-658.
|
[5] |
Calvetti, F., C. Di Prisco, and R. Nova. 2004. Experimental and numerical analysis of soil-pipe interaction. Journal of Geotechnical and Geoenvironmental Engineering 130(12):1292-1299.
|
[6] |
Chen, C., H. Chen, and W. Wu. 2021. Numerical modeling of interactions of rainfall and earthquakes on slope stability analysis. Environmental Earth Sciences 80(16):1-11.
|
[7] |
Cocchetti, G., C. Di Prisco, A. Galli, and R. Nova. 2009. Soil-pipeline interaction along unstable slopes:A coupled three-dimensional approach. Part 1:Theoretical formulation. Canadian Geotechnical Journal 46(11):1289-1304.
|
[8] |
Feng, W., R. Huang, J. Liu, X. Xu, and M. Luo. 2015. Large-scale field trial to explore landslide and pipeline interaction. Soils and Foundations 55(6):1466-1473.
|
[9] |
Gao, P. 2022. New progress in China's oil and gas pipeline construction in 2021. International Petroleum Economics 30(3):12-19 (in Chinese).
|
[10] |
Gao, J., Y. Yan, and C. Wang. 2011. Research on the application of UAV remote sensing in geologic hazards investigation for oil and gas pipelines. In ICPTT 2011:Sustainable solutions for water, sewer, gas, and oil pipelines, ed. B. Ma, M. Najafi, G. Jiang, and L. Slavin, 381-390. Reston, VA:American Society of Civil Engineers.
|
[11] |
Han, B., and Q. Fu. 2019. Numerical calculation of pipe-soil interaction subjected to unstable slope. IOP Conference Series:Earth and Environmental Science 384(1):Article 012101.
|
[12] |
Han, B., and Q. Fu. 2020. Study on the pipeline fragility appraisal indicators affected by landslide based on numerical simulation. Journal of Physics:Conference Series 1549(4):Article 042123.
|
[13] |
He, B., M. Bai, H. Shi, X. Li, Y. Qi, and Y. Li. 2021. Risk assessment of pipeline engineering geological disaster based on GIS and WOE-GA-BP Models. Applied Sciences 11(21):Article 9919.
|
[14] |
Jamshidi, A., A. Yazdani-Chamzini, S.H. Yakhchali, and S. Khaleghi. 2013. Developing a new fuzzy inference system for pipeline risk assessment. Journal of Loss Prevention in the Process Industries 26(1):197-208.
|
[15] |
Jia, N., Z. Yang, M. Xie, Y. Mitani, and J. Tong. 2014. GIS-based three-dimensional slope stability analysis considering rainfall infiltration. Bulletin of Engineering Geology and the Environment 74(3):919-931.
|
[16] |
Karrech, A., X. Dong, M. Elchalakani, H. Basarir, M.A. Shahin, and K. Regenauer-Lieb. 2021. Limit analysis for the seismic stability of three-dimensional rock slopes using the generalized Hoek-Brown criterion. International Journal of Mining Science and Technology 32(2):237-245.
|
[17] |
Kunert, H.G., J.L. Otegui, and A. Marquez. 2012. Nonlinear FEM strategies for modeling pipe-soil interaction. Engineering Failure Analysis 24:46-56.
|
[18] |
Lee, E.M., J.M.E. Audibert, J.V. Hengesh, and D.J. Nyman. 2009. Landslide-related ruptures of the Camisea pipeline system, Peru. Quarterly Journal of Engineering Geology and Hydrogeology 42(2):251-259.
|
[19] |
Leynes, R.D., W.P.C. Pioquinto, and J.A. Caranto. 2005. Landslide hazard assessment and mitigation measures in Philippine geothermal fields. Geothermics 34(2):205-217.
|
[20] |
Li, G., P. Zhang, Z. Li, Z. Ke, and G. Wu. 2016. Safety length simulation of natural gas pipeline subjected to transverse landslide. Electronic Journal of Geotechnical Engineering 21:4387-4399.
|
[21] |
Liang, Z., Q. Yang, J. Zhang, and B. Zhu. 2019. Mechanical Analysis of buried polyethylene pipelines under ground overload. Journal of Failure Analysis and Prevention 19(1):193-203.
|
[22] |
Liang, G., X. Zhang, X. Ling, H. Zhou, and W. Lin. 2021. Analysis of temporal-spatial characteristics of geological disasters in China from 2009 to 2019. Journal of Disaster Prevention and Reduction 37(3):1674-8565.
|
[23] |
Liu, C., D.D. Pollard, and B. Shi. 2013. Analytical solutions and numerical tests of elastic and failure behaviors of close-packed lattice for brittle rocks and crystals. Journal of Geophysical Research:Solid Earth 118(1):71-82.
|
[24] |
Liu, C., D.D. Pollard, S. Deng, and A. Aydin. 2015. Mechanism of formation of wiggly compaction bands in porous sandstone:1. Observations and conceptual model. Journal of Geophysical Research:Solid Earth 120(12):8138-8152.
|
[25] |
Liu, C., Q. Xu, B. Shi, S. Deng, and H. Zhu. 2017. Mechanical properties and energy conversion of 3D close-packed lattice model for brittle rocks. Computers & Geosciences 103:12-20.
|
[26] |
Liu, P., J. Zheng, B. Zhang, and P. Shi. 2010. Failure analysis of natural gas buried X65 steel pipeline under deflection load using finite element method. Materials & Design 31(3):1384-1391.
|
[27] |
Lombardi, L., M. Nocentini, W. Frodella, T. Nolesini, F. Bardi, E. Intrieri, and N. Casagli. 2016. The Calatabiano landslide (southern Italy):Preliminary GB-InSAR monitoring data and remote 3D mapping. Landslides 14(2):685-696.
|
[28] |
Marinos, V., G. Stoumpos, and C. Papazachos. 2019. Landslide hazard and risk assessment for a natural gas pipeline project:The case of the trans Adriatic pipeline, Albania section. Geosciences 9(2):Article 61.
|
[29] |
McQuillan, A., I. Canbulat, and J. Oh. 2020. Methods applied in Australian industry to evaluate coal mine slope stability. International Journal of Mining Science and Technology 30(2):151-155.
|
[30] |
Rajani, B.B., P.K. Robertson, and N.R. Morgenstern. 1995. Simplified design methods for pipelines subject to transverse and longitudinal soil movements. Canadian Geotechnical Journal 32(2):309-323.
|
[31] |
Rojhani, M., M. Moradi, A. Galandarzadeh, and S. Takada. 2012. Centrifuge modeling of buried continuous pipelines subjected to reverse faulting. Canadian Geotechnical Journal 49(6):659-670.
|
[32] |
Sun, W., G. Wang, and L. Zhang. 2021. Slope stability analysis by strength reduction method based on average residual displacement increment criterion. Bulletin of Engineering Geology and the Environment 80(6):4367-4378.
|
[33] |
Tang, Z. 2020. Rupture and explosion of natural gas pipeline caused by road collapse in Suide, Shaanxi Province. https://m.baidu.com/sf_baijiahao/s?id=1674167473749322696&wfr=spider&for=pc&sa=vs_ob_realtime. Accessed 5 Jun 2022 (in Chinese).
|
[34] |
Topal, T., and M. Akin. 2009. Geotechnical assessment of a landslide along a natural gas pipeline for possible remediations (Karacabey-Turkey). Environmental Geology 57(3):611-620.
|
[35] |
Vasconez, F., M. Estrella, A. Velastegui, J. Nunez, H. Ponce, and P. Riofrio. 2010. Landslide hazard assessment, monitoring, and stabilization:Villano oil pipeline system, Ecuador. Paper presented at the SPE Annual Technical Conference and Exhibition, 19-22 September 2010, Florence, Italy.
|
[36] |
Vasseghi, A., E. Haghshenas, A. Soroushian, and M. Rakhshandeh. 2021. Failure analysis of a natural gas pipeline subjected to landslide. Engineering Failure Analysis 119:Article 105009.
|
[37] |
Wang, F., and J. Pan. 2017. Explosion of natural gas pipeline in Southwest Guizhou:8 dead and 35 injured. http://www.bjnews.com.cn/news/2017/07/02/448871.html?from=timeline&isappinstalled=0. Accessed 3 Jul 2017 (in Chinese).
|
[38] |
Xia, G., C. Liu, C. Xu, T. Le, and L. Foong. 2021. Dynamic analysis of the high-speed and long-runout landslide movement process based on the discrete element method:A case study of the Shuicheng landslide in Guizhou. China. Advances in Civil Engineering S1:1-16.
|
[39] |
Xie, F., C. Liu, T. Zhao, and G. Xia. 2021. Slope stability analysis via Discrete Element Method and Monte Carlo Simulations. Earth and Environmental Science 861(3):Article 032023.
|
[40] |
Xiong, J., Y. Cao, M. Sun, Y. Wang, and Z. Yong. 2020. Vulnerability evaluation of long-distance oil and gas pipeline under landslide actions based on GIS and Entropy Weight Method. Mountain Research 38(5):717-725 (in Chinese).
|
[41] |
Xu, L., and X. P, and G. Lu. 2022. Dynamic response analysis of gas pipeline under landslide based on DEM-FEM coupling. Science Technology and Engineering 22(9):3518-3524.
|
[42] |
Yan, Y., Y. Cui, X. Huang, J. Zhou, W. Zhang, S. Yin, J. Guo, and S. Hu. 2022. Combining seismic signal dynamic inversion and numerical modeling improves landslide process reconstruction. Earth Surface Dynamics 10:1233-1252.
|
[43] |
Yan, Y., S. Ma, S. Yin, S. Hu, Y. Long, C. Xie, and H. Jiang. 2021. Detection and numerical simulation of potential hazard in oil pipeline areas based on UAV surveys. Frontiers in Earth Science 9:Article 665478.
|
[44] |
Yan, Y., G. Xiong, J. Zhou, R. Wang, W. Huang, M. Yang, and D. Geng. 2022. A whole process risk management system for the monitoring and early warning of slope hazards affecting gas and oil pipelines. Frontiers in Earth Science 9:Article 1336.
|
[45] |
Yan, Y., D. Yang, D. Geng, S. Hu, Z. Wang, W. Hu, and S. Yin. 2019. Disaster reduction stick equipment:A method for monitoring and early warning of pipeline-landslide hazards. Journal of Mountain Science 16(12):2687-2700.
|
[46] |
Yuan, F., L. Li, Z. Guo, and L. Wang. 2015. Landslide impact on submarine pipelines:Analytical and numerical analysis. Journal of Engineering Mechanics 141(2):Article 04014109.
|
[47] |
Zahid, U., A. Godio, and S. Mauro. 2020. An analytical procedure for modelling pipeline-landslide interaction in gas pipelines. Journal of Natural Gas Science and Engineering 81:Article 103474.
|
[48] |
Zhang, L., M. Fang, X. Pang, X. Yan, and Y. Cao. 2018. Mechanical behavior of pipelines subjecting to horizontal landslides using a new finite element model with equivalent boundary springs. Thin-Walled Structures 124:501-513.
|
[49] |
Zhang, S., S. Li, S. Chen, Z. Wu, R. Wang, and Y. Duo. 2017. Stress analysis on large-diameter buried gas pipelines under catastrophic landslides. Petroleum Science 14(3):579-585.
|
[50] |
Zhang, J., Z. Liang, and C. Han. 2016. Mechanical behavior analysis of the buried steel pipeline crossing landslide area. Journal of Pressure Vessel Technology 138(5):Article 051702.
|
[51] |
Zhang, Y., X.M. Meng, T.A. Dijkstra, C.J. Jordan, G. Chen, R.Q. Zeng, and A. Novellino. 2020. Forecasting the magnitude of potential landslides based on InSAR techniques. Remote Sensing of Environment 241:Article 111738.
|
[52] |
Zhang, Y., J. Shuai, H. Zhang, D. Yang, H. Jiang, and K. Shan. 2020. A remote real-time monitoring system for landslide pipeline state based on cloud service platform. Journal of Safety Science and Technology 16(2):124-129.
|
[53] |
Zhang, Y., J. Tang, Y. Cheng, L. Huang, F. Guo, X. Yin, and N. Li. 2022. Prediction of landslide displacement with dynamic features using intelligent approaches. International Journal of Mining Science and Technology 32(3):539-549.
|
[54] |
Zheng, J., B. Zhang, P. Liu, and L. Wu. 2012. Failure analysis and safety evaluation of buried pipeline due to deflection of landslide process. Engineering Failure Analysis 25:156-168.
|
[55] |
Zhou, X. 2018. Analysis of 10 third party damage accidents of high pressure and above gas pipeline from 2009 to 2017. Technology and Market 25(59-61):64 (in Chinese).
|
[56] |
Zhu, Y., T. Ishikawa, Y. Zhang, B.T. Nguyen, and S.S. Subramanian. 2022. A FEM-MPM hybrid coupled framework based on local shear strength method for simulating rainfall/runoff-induced landslide runout. Landslides 19(8):2021-2032.
|
[57] |
Zhu, H., and M.F. Randolph. 2010. Large deformation finite-element analysis of submarine landslide interaction with embedded pipelines. International Journal of Geomechanics 10(4):145-152.
|