Citation: | Stavros Sakellariou, Athanassios Sfougaris, Olga Christopoulou, Stergios Tampekis. Spatial Resilience to Wildfires through the Optimal Deployment of Firefighting Resources: Impact of Topography on Initial Attack Effectiveness[J]. International Journal of Disaster Risk Science, 2023, 14(1): 98-112. doi: 10.1007/s13753-023-00464-3 |
Arrubla, J.A.G., L. Ntaimo, and C. Stripling. 2014. Wildfire initial response planning using probabilistically constrained stochastic integer programming. International Journal of Wildland Fire 23(6): 825–838.
|
Belval, E.J., Y. Wei, and M. Bevers. 2016. A stochastic mixed integer program to model spatial wildfire behavior and suppression placement decisions with uncertain weather. Canadian Journal of Forest Research 46(2): 234–248.
|
Boegelsack, N., J. Withey, G. O’Sullivan, and D. McMartin. 2018. A critical examination of the relationship between wildfires and climate change with consideration of the human impact. Journal of Environmental Protection 9(5): 461–467.
|
Calkin, D.E., C.S. Stonesifer, M.P. Thompson, and C.W. McHugh. 2014. Large airtanker use and outcomes in suppressing wildland fires in the United States. International Journal of Wildland Fire 23(2): 259–271.
|
Church, R., and C. ReVelle. 1974. The maximal covering location problem. Papers of the Regional Science Association 32(1): 101–118.
|
CLMS (Copernicus Land Monitoring Service). 2018. CORINE land cover 2012. https://land.copernicus.eu/pan-european/corine-land-cover. Accessed 30 Mar 2021.
|
Costafreda-Aumedes, S., A. Cardil, D.M. Terrén, S.N. Daniel, R. Mavsar, and C. Vega-García. 2015. Analysis of factors influencing deployment of fire suppression resources in Spain using artificial neural networks. iForest: Biogeosciences and Forestry 9(1): 138–145.
|
Cumming, G.S., and C.R. Allen. 2017. Protected areas as social-ecological systems: Perspectives from resilience and social-ecological systems theory. Ecological Applications 27(6): 1709–1717.
|
Davey, N., S. Dunstall, and S. Halgamuge. 2021. Dynamic relocation of aerial firefighting resources to reduce expected wildfire damage. In Data and decision sciences in action 2: Proceedings of the ASOR/DORS Conference 2018, ed. A.T. Ernst, S. Dunstall, R. García-Flores, M. Grobler, and D. Marlow, 141–153. Cham, Switzerland: Springer.
|
Díaz-Delgado, R., F. Lloret, X. Pons, and J. Terradas. 2002. Satellite evidence of decreasing resilience in Mediterranean plant communities after recurrent wildfires. Ecology 83(8): 2293–2303.
|
ESM (European Settlement Map—Copernicus). 2017. European settlement map. https://land.copernicus.eu/pan-european/GHSL/european-settlement-map. Accessed 20 Jun 2021.
|
European Commission. 2023. Environment. Natura 2000. https://ec.europa.eu/environment/nature/natura2000/index_en.htm. Accessed 15 Jan 2023.
|
Folke, C. 2016. Resilience (republished). Ecology and Society 21(4): Article 44.
|
Fraccascia, L., I. Giannoccaro, and V. Albino. 2018. Resilience of complex systems: State of the art and directions for future research. Complexity. https://doi.org/10.1155/2018/3421529.
|
Fuchs, S., and T. Thaler, eds. 2018. In Vulnerability and resilience to natural hazards. Cambridge: Cambridge University Press.
|
Geodata.gov.gr. 2018. Hellenic portal of geospatial data. http://geodata.gov.gr/. Accessed 30 Sept 2021.
|
Geofabrik GmbH and OpenStreetMap Contributors. 2018. Data for Greece. https://download.geofabrik.de/europe/greece.html. Accessed 30 Dec 2021.
|
Haight, R.G., and J.S. Fried. 2007. Deploying wildland fire suppression resources with a scenario-based standard response model. INFOR: Information Systems and Operational Research 45(1): 31–39.
|
HFB (Hellenic Fire Brigade). 2018. Fire events. https://www.fireservice.gr/el_GR/stoicheia-symbanton. Accessed 20 Apr 2021.
|
HNMS (Hellenic National Meteorological Service). 2018. Website of the Hellenic National Meteorological Service. http://www.hnms.gr/emy/en/index_html?. Accessed 25 Feb 2021.
|
Lee, Y., and B. Lee. 2018. Tradeoff between the number of firefighting resources and the level of fire ignition prevention efforts in the Republic of Korea. Journal of Mountain Science 15(1): 144–155.
|
Lee, Y., J.S. Fried, H.J. Albers, and R.G. Haight. 2013. Deploying initial attack resources for wildfire suppression: spatial coordination, budget constraints, and capacity constraints. Canadian Journal of Forest Research 43(1): 56–65.
|
Lozano, O.M., M. Salis, A.A. Ager, B. Arca, F.J. Alcasena, A.T. Monteiro, M.A. Finney, and L. Del Giudice et al. 2017. Assessing climate change impacts on wildfire exposure in Mediterranean areas. Risk Analysis 37(10): 1898–1916.
|
Marey-Perez, M., X. Loureiro, E.J. Corbelle-Rico, and C. Fernández-Filgueira. 2021. Different strategies for resilience to wildfires: The experience of collective land ownership in Galicia (Northwest Spain). Sustainability 13(9): Article 4761.
|
Minas, J., J. Hearne, and D. Martell. 2015. An integrated optimization model for fuel management and fire suppression preparedness planning. Annals of operations Research 232(1): 201–215.
|
Parisien, M.A., V.G. Kafka, K.G. Hirsch, B.M. Todd, S.G. Lavoie, and P.D. Maczek. 2005. Mapping fire susceptibility with the Burn-P3 simulation model. Information Report NOR-X-405. Edmonton, AB: Natural Resources Canada, Canadian Forest Service, Northern Forestry Centre.
|
Pinto, G.A.S.J., F. Rousseu, M. Niklasson, and I. Drobyshev. 2020. Effects of human-related and biotic landscape features on the occurrence and size of modern forest fires in Sweden. Agricultural and Forest Meteorology 291: Article 108084.
|
Price, M. 2008. Slopes, sharp turns, and speed. Refining emergency response networks to accommodate steep slopes and turn rules. https://www.esri.com/news/arcuser/0708/files/burnaby_1.pdf. Accessed 16 Sept 2019.
|
Rashidi, E., H. Medal, and A. Hoskins. 2018. An attacker-defender model for analyzing the vulnerability of initial attack in wildfire suppression. Naval Research Logistics (NRL) 65(2): 120–134.
|
Ricotta, C., S. Bajocco, D. Guglietta, and M. Conedera. 2018. Assessing the influence of roads on fire ignition: Does land cover matter? Fire 1(2): Article 24.
|
Rodrigues, M., F. Alcasena, and C. Vega-García. 2019. Modeling initial attack success of wildfire suppression in Catalonia, Spain. Science of the Total Environment 666: 915–927.
|
Rodríguez-Veiga, J., M.J. Ginzo-Villamayor, and B. Casas-Méndez. 2018. An integer linear programming model to select and temporally allocate resources for fighting forest fires. Forests 9(10): Article 583.
|
Ruffault, J., and F. Mouillot. 2017. Contribution of human and biophysical factors to the spatial distribution of forest fire ignitions and large wildfires in a French Mediterranean region. International Journal of Wildland Fire 26(6): 498–508.
|
Ruffault, J., T. Curt, V. Moron, R.M. Trigo, F. Mouillot, N. Koutsias, F. Pimont, and N. Martin-StPaul et al. 2020. Increased likelihood of heat-induced large wildfires in the Mediterranean Basin. Scientific Reports 10(1): 1–9.
|
Sakellariou, S., F. Samara, S. Tampekis, O. Christopoulou, and A. Sfougaris. 2017. Optimal number and location of watchtowers for immediate detection of forest fires in a small island. International Journal of Agricultural and Environmental Information Systems 8(4): 1–19.
|
Sakellariou, S., F. Samara, S. Tampekis, A. Sfougaris, and O. Christopoulou. 2020. Development of a Spatial Decision Support System (SDSS) for the active forest-urban fires management through location planning of mobile fire units. Environmental Hazards 19(2): 131–151.
|
Sakellariou, S., A. Sfougaris, O. Christopoulou, N. Dalezios, and F. Samara. 2021. Inter-annual monitoring of land use land cover changes with emphasis on forest reserves under a spatial planning perspective. International Journal of Sustainable Agricultural Management and Informatics 7(3): 183–199.
|
Sakellariou, S., G. Sfoungaris, and O. Christopoulou. 2022a. Territorial resilience through visibility analysis for immediate detection of wildfires integrating fire susceptibility, geographical features, and optimization methods. International Journal of Disaster Risk Science 13(4): 621–635.
|
Sakellariou, S., P. Cabral, M. Caetano, F. Pla, M. Painho, O. Christopoulou, A. Sfougaris, N. Dalezios, et al. 2020. Remotely sensed data fusion for spatiotemporal geostatistical analysis of forest fire hazard. Sensors 20(17): Article 5014.
|
Sakellariou, S., M.A. Parisien, M. Flannigan, X. Wang, B. de Groot, S. Tampekis, F. Samara, A. Sfougaris, et al. 2020. Spatial planning of fire-agency stations as a function of wildfire likelihood in Thasos, Greece. Science of the Total Environment 729: Article 139004.
|
Sakellariou, S., A. Sfougaris, O. Christopoulou, and S. Tampekis. 2022b. Integrated wildfire risk assessment of natural and anthropogenic ecosystems based on simulation modeling and remotely sensed data fusion. International Journal of Disaster Risk Reduction 78: Article 103129.
|
Stevens-Rumann, C.S., K.B. Kemp, P.E. Higuera, B.J. Harvey, M.T. Rother, D.C. Donato, P. Morgan, and T.T. Veblen. 2018. Evidence for declining forest resilience to wildfires under climate change. Ecology Letters 21(2): 243–252.
|
Tsagari, K., G. Karetsos, and N. Proutsos. 2011. Forest fires in western and central Macedonia, 1983–2005. World Wildlife Fund Hellas and National Agricultural Research Foundation—Institute of Mediterranean Forest Ecosystems (NAGREF-IMFE) and Forest Products Technology (FPT) (in Greek).
|
Turco, M., N. Levin, N. Tessler, and H. Saaroni. 2017. Recent changes and relations among drought, vegetation and wildfires in the Eastern Mediterranean: The case of Israel. Global and Planetary Change 151: 28–35.
|
Tymstra, C., R.W. Bryce, B.M. Wotton, S.W. Taylor, and O.B. Armitage. 2010. Development and structure of Prometheus: The Canadian wildland fire growth simulation model. Information Report NOR-X-417. Edmonton, AB: Natural Resources Canada, Canadian Forest Service, Northern Forestry Centre.
|
Van Der Merwe, M., J.P. Minas, M. Ozlen, and J.W. Hearne. 2015. A mixed integer programming approach for asset protection during escaped wildfires. Canadian Journal of Forest Research 45(4): 444–451.
|
Van Well, L., P. Van Der Keur, A. Harjanne, E. Pagneux, A. Perrels, and H.J. Henriksen. 2018. Resilience to natural hazards: An analysis of territorial governance in the Nordic countries. International Journal of Disaster Risk Reduction 31: 1283–1294.
|
Vilar, L., A. Camia, J. San-Miguel-Ayanz, and M.P. Martín. 2016. Modeling temporal changes in human-caused wildfires in Mediterranean Europe based on Land Use-Land Cover interfaces. Forest Ecology and Management 378: 68–78.
|
Wei, Y., M. Bevers, E. Belval, and B. Bird. 2015. A chance-constrained programming model to allocate wildfire initial attack resources for a fire season. Forest Science 61(2): 278–288.
|
Xu, R., P. Yu, M.J. Abramson, F.H. Johnston, J.M. Samet, M.L. Bell, A. Haines, and K.L. Ebi et al. 2020. Wildfires, global climate change, and human health. New England Journal of Medicine 383(22): 2173–2181.
|
Yu, D., Y. Liu, P. Shi, and J. Wu. 2019. Projecting impacts of climate change on global terrestrial ecoregions. Ecological Indicators 103: 114–123.
|
Zhou, S., and A. Erdogan. 2019. A spatial optimization model for resource allocation for wildfire suppression and resident evacuation. Computers and Industrial Engineering 138: Article 106101.
|