Citation: | Rui Chen, Binbin He, Xingwen Quan, Xiaoying Lai, Chunquan Fan. Improving Wildfire Probability Modeling by Integrating Dynamic-Step Weather Variables over Northwestern Sichuan, China[J]. International Journal of Disaster Risk Science, 2023, 14(2): 313-325. doi: 10.1007/s13753-023-00476-z |
[1] |
Adab, H., K.D. Kanniah, and K. Solaimani. 2012. Modeling forest fire risk in the northeast of Iran using remote sensing and GIS techniques. Natural Hazards 65(3):1723-1743.
|
[2] |
Al-Fugara, A., A.N. Mabdeh, M. Ahmadlou, H.R. Pourghasemi, R. Al-Adamat, B. Pradhan, and A.R. Al-Shabeeb. 2021. Wildland fire susceptibility mapping using support vector regression and adaptive neuro-fuzzy inference system-based whale optimization algorithm and simulated annealing. ISPRS International Journal of Geo-Information 10(6):Article 382.
|
[3] |
Arndt, N., H. Vacik, V. Koch, A. Arpaci, and H. Gossow. 2013. Modeling human-caused forest fire ignition for assessing forest fire danger in Austria. Iforest-Biogeosciences and Forestry 6(6):315-325.
|
[4] |
Athmania, D., and H. Achour. 2014. External validation of the ASTER GDEM2, GMTED2010 and CGIAR-CSI-SRTM v.41 free access digital elevation models (DEMs) in Tunisia and Algeria. Remote Sensing 6(5):4600-4620.
|
[5] |
Breiman, L. 2001. Random forests. Machine Learning 45(1):5-32.
|
[6] |
Bui, D.T., N.-D. Hoang, and P. Samui. 2019. Spatial pattern analysis and prediction of forest fire using new machine learning approach of Multivariate Adaptive Regression Splines and Differential Flower Pollination optimization:A case study at Lao Cai province (Viet Nam). Journal of Environmental Management 237:476-487.
|
[7] |
Cao, Y., M. Wang, and K. Liu. 2017. Wildfire susceptibility assessment in Southern China:A comparison of multiple methods. International Journal of Disaster Risk Science 8(2):164-181.
|
[8] |
Carabajal, C.C., D.J. Harding, J.-P. Boy, J.J. Danielson, D.B. Gesch, and V.P. Suchdeo. 2011. Evaluation of the global multi-resolution terrain elevation data 2010 (GMTED2010) using ICESat geodetic control. In Proceedings of International Symposium on Lidar and Radar Mapping 2011:Technologies and Applications, 26-29 May 2011, Nanjing, China.
|
[9] |
Carrasco, J., M. Acuna, A. Miranda, G. Alfaro, C. Pais, and A. Weintraub. 2021. Exploring the multidimensional effects of human activity and land cover on fire occurrence for territorial planning. Journal of Environmental Management 297:Article 113428.
|
[10] |
Chen, T., and C. Guestrin. 2016. XGBoost:A scalable tree boosting system. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD), 13-17 August 2016, San Francisco, CA, USA.
|
[11] |
Eskandari, S., M. Amiri, N. Sãdhasivam, and H.R. Pourghasemi. 2020. Comparison of new individual and hybrid machine learning algorithms for modeling and mapping fire hazard:A supplementary analysis of fire hazard in different counties of Golestan Province in Iran. Natural Hazards 104(1):305-327.
|
[12] |
ESRI (Environmental Systems Research Institute). 2009. World imagery. https://www.arcgis.com/home/item.html?id=10df2279f9684e4a9f6a7f08febac2a9. Accessed 18 Mar 2021.
|
[13] |
Fan, C., and B. He. 2021. A physics-guided deep learning model for 10-h dead fuel moisture content estimation. Forests 12(7):Article 933.
|
[14] |
Gale, M.G., G.J. Cary, A.I.J.M. Van Dijk, and M. Yebra. 2021. Forest fire fuel through the lens of remote sensing:Review of approaches, challenges and future directions in the remote sensing of biotic determinants of fire behaviour. Remote Sensing of Environment 255:Article 112282.
|
[15] |
Giglio, L., W. Schroeder, and C.O. Justice. 2016. The collection 6 MODIS active fire detection algorithm and fire products. Remote Sensing of Environment 178:31-41.
|
[16] |
Goldarag, Y.J., A. Mohammadzadeh, and A.S. Ardakani. 2016. Fire risk assessment using neural network and logistic regression. Journal of the Indian Society of Remote Sensing 44(6):885-894.
|
[17] |
Guo, F.T., S. Selvalakshmi, F.F. Lin, G.Y. Wang, W.H. Wang, Z.W. Su, and A.Q. Liu. 2016. Geospatial information on geographical and human factors improved anthropogenic fire occurrence modeling in the Chinese boreal forest. Canadian Journal of Forest Research 46(4):582-594.
|
[18] |
Guo, F.T., Z.W. Su, M. Tigabu, X.J. Yang, F.F. Lin, H.L. Liang, and G.Y. Wang. 2017. Spatial modelling of fire drivers in urban-forest ecosystems in China. Forests 8(6):Article 180.
|
[19] |
Hanley, J.A., and B.J. McNeil. 1982. The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology 143(1):29-36.
|
[20] |
Henderson-Sellers, B. 1984. A new formula for latent heat of vaporization of water as a function of temperature. Quarterly Journal of the Royal Meteorological Society 110(466):1186-1190.
|
[21] |
Jaafari, A., D.M. Gholami, and E.K. Zenner. 2017. A Bayesian modeling of wildfire probability in the Zagros Mountains, Iran. Ecological Informatics 39:32-44.
|
[22] |
Jaafari, A., D. Mafi-Gholami, B. Thai Pham, and D.T. Bui. 2019. Wildfire probability mapping:Bivariate vs. multivariate statistics. Remote Sensing 11(6):Article 618.
|
[23] |
Jaafari, A., S.V.R. Termeh, and D.T. Bui. 2019. Genetic and firefly metaheuristic algorithms for an optimized neuro-fuzzy prediction modeling of wildfire probability. Journal of Environmental Management 243:358-369.
|
[24] |
Jaafari, A., E.K. Zenner, M. Panahi, and H. Shahabi. 2019. Hybrid artificial intelligence models based on a neuro-fuzzy system and metaheuristic optimization algorithms for spatial prediction of wildfire probability. Agricultural and Forest Meteorology 266:198-207.
|
[25] |
Jain, P., S.C.P. Coogan, S.G. Subramanian, M. Crowley, S. Taylor, and M.D. Flannigan. 2020. A review of machine learning applications in wildfire science and management. Environmental Reviews 28(4):478-505.
|
[26] |
Janiec, P., and S. Gadal. 2020. A comparison of two machine learning classification methods for remote sensing predictive modeling of the forest fire in the North-Eastern Siberia. Remote Sensing 12(24):Article 4157.
|
[27] |
Jenks, G.F., and F.C. Caspall. 1971. Error on choroplethic maps:Definition, measurement, reduction. Annals of the Association of American Geographers 61(2):217-244.
|
[28] |
Jiao, M., X. Quan, and J. Yao. 2022. Evaluation of four satellite-derived fire products in the fire-prone, cloudy, and mountainous area over subtropical China. IEEE Geoscience and Remote Sensing Letters 19:Article 6513405.
|
[29] |
Jurdao, S., E. Chuvieco, and J.M. Arevalillo. 2012. Modelling fire ignition probability from satellite estimates of live fuel moisture content. Fire Ecology 8(1):77-97.
|
[30] |
Kang, Y., E. Jang, J. Im, C. Kwon, and S. Kim. 2020. Developing a new hourly forest fire risk index based on catboost in South Korea. Applied Sciences 10(22):Article 8213.
|
[31] |
Liu, X.-P., G.-Q. Zhang, J. Lu, and J.-Q. Zhang. 2019. Risk assessment using transfer learning for grassland fires. Agricultural and Forest Meteorology 269-270:102-111.
|
[32] |
Luo, K.W., X.W. Quan, B.B. He, and M. Yebra. 2019. Effects of live fuel moisture content on wildfire occurrence in fire-prone regions over southwest China. Forests 10(10):Article 17.
|
[33] |
Ma, J., X. Ding, J.C.P. Cheng, F. Jiang, Y. Tan, V.J.L. Gan, and Z. Wan. 2020. Identification of high impact factors of air quality on a national scale using big data and machine learning techniques. Journal of Cleaner Production 244:Article 118955.
|
[34] |
Ma, W., Z. Feng, Z. Cheng, S. Chen, and F. Wang. 2020. Identifying forest fire driving factors and related impacts in China using random forest algorithm. Forests 11(5):Article 507.
|
[35] |
Malik, A., M.R. Rao, N. Puppala, P. Koouri, V.A.K. Thota, Q. Liu, S. Chiao, and J. Gao. 2021. Data-driven wildfire risk prediction in northern California. Atmosphere 12(1):Article 109.
|
[36] |
Mallinis, G., M. Petrila, I. Mitsopoulos, A. Lorent, S. Neagu, B. Apostol, V. Gancz, I. Popa, and J.G. Goldammer. 2019. Geospatial patterns and drivers of forest fire occurrence in Romania. Applied Spatial Analysis and Policy 12(4):773-795.
|
[37] |
Miao, C., Q. Sun, A.G.L. Borthwick, and Q. Duan. 2016. Linkage between hourly precipitation events and atmospheric temperature changes over China during the warm season. Scientific Reports 6:Article 22543.
|
[38] |
Milanovic, S., N. Markovic, D. Pamucar, L. Gigovic, P. Kostic, and S.D. Milanovic. 2021. Forest fire probability mapping in eastern Serbia:Logistic regression versus random forest method. Forests 12(1):Article 5.
|
[39] |
Mitchell, R., and E. Frank. 2017. Accelerating the XGBoost algorithm using GPU computing. PeerJ Computer Science 3:Article e127.
|
[40] |
National Forestry and Grassland Administration. 2011. Technical regulations for inventory for forest management planning and design (GB/T 26424-2010). https://std.samr.gov.cn/gb/search/gbDetailed?id=71F772D75FA1D3A7E05397BE0A0AB82A. Accessed 15 Mar 2021.
|
[41] |
Nolan, R.H., C.J. Blackman, V.R. de Dios, B. Choat, B.E. Medlyn, X. Li, R.A. Bradstock, and M.M. Boer. 2020. Linking forest flammability and plant vulnerability to drought. Forests 11(7):Article 779.
|
[42] |
Nolan, R.H., M.M. Boer, L. Collins, V.R. de Dios, H. Clarke, M. Jenkins, B. Kenny, and R.A. Bradstock. 2020. Causes and consequences of eastern Australia's 2019-20 season of mega-fires. Global Change Biology 26(3):1039-1041.
|
[43] |
Nolan, R.H., V.R. de Dios, M.M. Boer, G. Caccamo, M.L. Goulden, and R.A. Bradstock. 2016. Predicting dead fine fuel moisture at regional scales using vapour pressure deficit from MODIS and gridded weather data. Remote Sensing of Environment 174:100-108.
|
[44] |
Phelps, N., and D.G. Woolford. 2021. Comparing calibrated statistical and machine learning methods for wildland fire occurrence prediction:A case study of human-caused fires in Lac La Biche, Alberta, Canada. International Journal of Wildland Fire 30(11):850-870.
|
[45] |
Piramuthu, S. 2008. Input data for decision trees. Expert Systems with Applications 34(2):1220-1226.
|
[46] |
Pourtaghi, Z.S., H.R. Pourghasemi, and M. Rossi. 2015. Forest fire susceptibility mapping in the Minudasht forests, Golestan province, Iran. Environmental Earth Sciences 73(4):1515-1533.
|
[47] |
Pyne, S.J., P.L. Andrews, and R.D. Laven. 1996. Introduction to wildland fire. New York:John Wiley and Sons.
|
[48] |
Quan, X., B. He, and X. Li. 2015. A Bayesian network-based method to alleviate the ill-posed inverse problem:A case study on leaf area index and canopy water content retrieval. IEEE Transactions on Geoscience and Remote Sensing 53(12):6507-6517.
|
[49] |
Quan, X., B. He, M. Yebra, C. Yin, Z. Liao, and X. Li. 2017. Retrieval of forest fuel moisture content using a coupled radiative transfer model. Environmental Modelling & Software 95:290-302.
|
[50] |
Quan, X., Y. Li, B. He, G.J. Cary, and G. Lai. 2021. Application of Landsat ETM+ and OLI data for foliage fuel load monitoring using radiative transfer model and machine learning method. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 14:5100-5110.
|
[51] |
Quan, X., Q. Xie, B. He, K. Luo, and X. Liu. 2021. Integrating remotely sensed fuel variables into wildfire danger assessment for China. International Journal of Wildland Fire 30(10):807-821.
|
[52] |
Quan, X., M. Yebra, D. Riaño, B. He, G. Lai, and X. Liu. 2021. Global fuel moisture content mapping from MODIS. International Journal of Applied Earth Observation and Geoinformation 101:Article 102354.
|
[53] |
Resco de Dios, V., A.W. Fellows, R.H. Nolan, M.M. Boer, R.A. Bradstock, F. Domingo, and M.L. Goulden. 2015. A semi-mechanistic model for predicting the moisture content of fine litter. Agricultural and Forest Meteorology 203:64-73.
|
[54] |
Semeraro, T., G. Mastroleo, R. Aretano, G. Facchinetti, G. Zurlini, and I. Petrosillo. 2016. GIS fuzzy expert system for the assessment of ecosystems vulnerability to fire in managing Mediterranean natural protected areas. Journal of Environmental Management 168:94-103.
|
[55] |
Shabbir, A.H., J. Zhang, J.D. Johnston, S.A. Sarkodie, J.A. Lutz, and X. Liu. 2021. Correction:Predicting the influence of climate on grassland area burned in Xilingol, China with dynamic simulations of autoregressive distributed lag models. PLoS ONE 16(1):Article e0245828.
|
[56] |
Sichuan Forestry and Grassland Administration. 2017. Forest management inventory data of Sichuan Province (2010-2020). https://sczpt.sclcpt.cn/web/square/detail/72/35018/102?aa=0.600835027683043. Accessed 1 Mar 2021.
|
[57] |
Stefanidou, A., I.Z. Gitas, D. Stavrakoudis, and G. Eftychidis. 2019. Midterm fire danger prediction using satellite imagery and auxiliary thematic layers. Remote Sensing 11(23):Article 2786.
|
[58] |
Su, Z., H. Hu, G. Wang, Y. Ma, X. Yang, and F. Guo. 2018. Using GIS and Random Forests to identify fire drivers in a forest city, Yichun, China. Geomatics, Natural Hazards and Risk 9(1):1207-1229.
|
[59] |
Syphard, A.D., V.C. Radeloff, N.S. Keuler, R.S. Taylor, T.J. Hawbaker, S.I. Stewart, and M.K. Clayton. 2008. Predicting spatial patterns of fire on a southern California landscape. International Journal of Wildland Fire 17(5):602-613.
|
[60] |
Trang, P.T., M.E. Andrew, T. Chu, and N.J. Enright. 2022. Forest fire and its key drivers in the tropical forests of northern Vietnam. International Journal of Wildland Fire 31(3):213-229.
|
[61] |
USGS (United States Geological Survey). 2010. Global multi-resolution terrain elevation data 2010 (GMTED2010). https://www.usgs.gov/coastal-changes-and-impacts/gmted2010. Accessed 10 Jan 2021.
|
[62] |
Verdu, F., J. Salas, and C. Vega-Garcia. 2012. A multivariate analysis of biophysical factors and forest fires in Spain, 1991-2005. International Journal of Wildland Fire 21(5):498-509.
|
[63] |
Wang, S.S.-C., and Y. Wang. 2020. Quantifying the effects of environmental factors on wildfire burned area in the south central US using integrated machine learning techniques. Atmospheric Chemistry and Physics 20(18):11065-11087.
|
[64] |
Yebra, M., E. Chuvieco, and D. Riano. 2008. Estimation of live fuel moisture content from MODIS images for fire risk assessment. Agricultural and Forest Meteorology 148(4):523-536.
|
[65] |
Yebra, M., P.E. Dennison, E. Chuvieco, D. Riaño, P. Zylstra, E.R. Hunt, F.M. Danson, Y. Qi, and S. Jurdao. 2013. A global review of remote sensing of live fuel moisture content for fire danger assessment:Moving towards operational products. Remote Sensing of Environment 136:455-468.
|
[66] |
Yebra, M., X. Quan, D. Riaño, P. Rozas Larraondo, A.I.J.M. van Dijk, and G.J. Cary. 2018. A fuel moisture content and flammability monitoring methodology for continental Australia based on optical remote sensing. Remote Sensing of Environment 212:260-272.
|
[67] |
Zhang, G.L., M. Wang, and K. Liu. 2019. Forest fire susceptibility modeling using a convolutional neural network for Yunnan province of China. International Journal of Disaster Risk Science 10(3):386-403.
|
[68] |
Zheng, Z., Y.H. Gao, Q.Y. Yang, B. Zou, Y.J. Xu, Y.Y. Chen, S.Q. Yang, Y.Q. Wang, and Z.W. Wang. 2020. Predicting forest fire risk based on mining rules with ant-miner algorithm in cloud-rich areas. Ecological Indicators 118:Article 106772.
|
[69] |
Zong, X., X. Tian, and Y. Yin. 2020. Impacts of climate change on wildfires in central Asia. Forests 11(8):Article 802.
|