Volume 14 Issue 4
Sep.  2023
Turn off MathJax
Article Contents
Zhiping Jiao, Zhida Xu, Rui Guo, Zhiwei Zhou, Liming Jiang. Potential of Multi-temporal InSAR for Detecting Retrogressive Thaw Slumps: A Case of the Beiluhe Region of the Tibetan Plateau[J]. International Journal of Disaster Risk Science, 2023, 14(4): 523-538. doi: 10.1007/s13753-023-00505-x
Citation: Zhiping Jiao, Zhida Xu, Rui Guo, Zhiwei Zhou, Liming Jiang. Potential of Multi-temporal InSAR for Detecting Retrogressive Thaw Slumps: A Case of the Beiluhe Region of the Tibetan Plateau[J]. International Journal of Disaster Risk Science, 2023, 14(4): 523-538. doi: 10.1007/s13753-023-00505-x

Potential of Multi-temporal InSAR for Detecting Retrogressive Thaw Slumps: A Case of the Beiluhe Region of the Tibetan Plateau

doi: 10.1007/s13753-023-00505-x
Funds:

This research was funded by the Second Tibetan Plateau Scientific Expedition and Research Program (STEP) (Grant No. 2019QZKK0905), the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDA19070104), the National Natural Science Foundation of China (Grant Nos. 42174046 and 42171443), and the National Key R&D Program of China (Grant No. 2017YFA0603103).

  • Accepted Date: 2023-08-14
  • Publish Date: 2023-08-24
  • Permafrost degradation due to climate warming is severely reducing slope stability by increasing soil pore water pressure and decreasing shear strength. Retrogressive thaw slumps (RTSs) are among the most dynamic landforms in permafrost areas, which can result in the instability of landscape and ecosystem. However, the spatiotemporal characteristics of surface deformation of RTSs are still unclear, and the potentials of deformation properties in mapping large-scale RTSs need to be further assessed. In this study, we applied a multi-temporal Interferometric Synthetic Aperture Radar (MT-InSAR) method to map the spatiotemporal variations in surface deformation of RTSs in the Beiluhe region of the Tibetan Plateau by using 112 scenes of Sentinel-1 SAR data acquired from 2017 to 2021. The deformation rates of RTSs ranged from - 35 to 20 mm/year, and three typical motion stages were inferred by analyzing the deformation variation trend of the headwall of RTSs: stable, abrupt thaw, and linear subsidence. A total of 375 RTSs were identified in the Mati Hill region by combining InSAR-based deformation results with visual interpretation of optical remote sensing images. Among them, 76 RTSs were newly developed, and 26% more than the inventory derived from the optical images alone. This study demonstrated that the combination of InSAR-derived deformation with optical images has significant potential for detecting RTSs with high accuracy and efficiency at the regional scale.
  • loading
  • [1]
    Abbott, B.W., and J.B. Jones. 2015. Permafrost collapse alters soil carbon stocks, respiration, CH4, and N2O in upland tundra. Global Change Biology 21(12):4570-4587.
    [2]
    Balser, A.W. 2015. Retrogressive thaw slumps and active layer detachment slides in the Brooks Range and foothills of Northern Alaska:Terrain and timing. Fairbanks, AK:University of Alaska Fairbanks.
    [3]
    Berardino, P., G. Fornaro, R. Lanari, and E. Sansosti. 2002. A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms. IEEE Transactions on Geoscience and Remote Sensing 40(11):2375-2383.
    [4]
    Chen, F., H. Lin, W. Zhou, T. Hong, and G. Wang. 2013. Surface deformation detected by ALOS PALSAR small baseline SAR interferometry over permafrost environment of Beiluhe section, Tibet Plateau, China. Remote Sensing of Environment 138:10-18.
    [5]
    Chen, J., L. Liu, T. Zhang, B. Cao, and H. Lin. 2018. Using persistent scatterer interferometry to map and quantify permafrost thaw subsidence:A case study of Eboling Mountain on the Qinghai-Tibet Plateau. Journal of Geophysical Research:Earth Surface 123(10):2663-2676.
    [6]
    Chen, J., T. Wu, D. Zou, L. Liu, X. Wu, W. Gong, X. Zhu, R. Li, et al. 2022. Magnitudes and patterns of large-scale permafrost ground deformation revealed by Sentinel-1 InSAR on the central Qinghai-Tibet Plateau. Remote Sensing of Environment 268:Article 112778.
    [7]
    Dini, B., A. Manconi, and S. Loew. 2019. Investigation of slope instabilities in NW Bhutan as derived from systematic DInSAR analyses. Engineering Geology 259:Article 105111.
    [8]
    Ferretti, A., C. Prati, and F. Rocca. 2001. Permanent scatterers in SAR interferometry. IEEE Transactions on Geoscience and Remote Sensing 39(1):8-20.
    [9]
    Guzzetti, F., A.C. Mondini, M. Cardinali, F. Fiorucci, M. Santangelo, and K.-T. Chang. 2012. Landslide inventory maps:New tools for an old problem. Earth-Science Reviews 112(1-2):42-66.
    [10]
    Hu, X., T. Wang, T.C. Pierson, Z. Lu, J. Kim, and T.H. Cecere. 2016. Detecting seasonal landslide movement within the cascade landslide complex (Washington) using time-series SAR imagery. Remote Sensing of Environment 187:49-61.
    [11]
    Huang, L., J. Luo, Z. Lin, F. Niu, and L. Liu. 2020. Using deep learning to map retrogressive thaw slumps in the Beiluhe region (Tibetan Plateau) from CubeSat images. Remote Sensing of Environment 237:Article 111534.
    [12]
    Jiao, C., F. Niu, P. He, L. Ren, J. Luo, and Y. Shan. 2022. Deformation and volumetric change in a typical retrogressive thaw slump in permafrost regions of the central Tibetan Plateau, China. Remote Sensing 14(21):Article 5592.
    [13]
    Kang, Y., Z. Lu, C. Zhao, and W. Qu. 2023. Inferring slip-surface geometry and volume of creeping landslides based on InSAR:A case study in Jinsha River basin. Remote Sensing of Environment 294:Article 113620.
    [14]
    Kokelj, S.V., and M.T. Jorgenson. 2013. Advances in thermokarst research:Recent advances in research investigating thermokarst processes. Permafrost and Periglacial Processes 24(2):108-119.
    [15]
    Kokelj, S.V., J. Kokoszka, J. van der Sluijs, A.C.A. Rudy, J. Tunnicliffe, S. Shakil, S.E. Tank, and S. Zolkos. 2021. Thaw-driven mass wasting couples slopes with downstream systems, and effects propagate through Arctic drainage networks. The Cryosphere 15(7):3059-3081.
    [16]
    Lewkowicz, A.G. 2007. Dynamics of active-layer detachment failures, Fosheim Peninsula, Ellesmere Island, Nunavut. Canada. Permafrost and Periglacial Processes 18(1):89-103.
    [17]
    Lewkowicz, A.G., and R.G. Way. 2019. Extremes of summer climate trigger thousands of thermokarst landslides in a high Arctic environment. Nature Communications 10(1):Article 1329.
    [18]
    Lin, Z., F. Niu, H. Liu, and J. Lu. 2011. Hydrothermal processes of alpine tundra lakes, Beiluhe Basin, Qinghai-Tibet Plateau. Cold Regions Science and Technology 65(3):446-455.
    [19]
    Liu, L., K.M. Schaefer, A.C. Chen, A. Gusmeroli, H.A. Zebker, and T. Zhang. 2015. Remote sensing measurements of thermokarst subsidence using InSAR:Insar thermokarst. Journal of Geophysical Research:Earth Surface 120(9):1935-1948.
    [20]
    Luo, J., F. Niu, Z. Lin, M. Liu, and G. Yin. 2015. Thermokarst lake changes between 1969 and 2010 in the Beilu River Basin, Qinghai-Tibet Plateau. China. Science Bulletin 60(5):556-564.
    [21]
    Luo, J., F. Niu, Z. Lin, M. Liu, and G. Yin. 2019. Recent acceleration of thaw slumping in permafrost terrain of Qinghai-Tibet Plateau:An example from the Beiluhe region. Geomorphology 341:79-85.
    [22]
    Massonnet, D., and K.L. Feigl. 1998. Radar interferometry and its application to changes in the Earth's surface. Reviews of Geophysics 36(4):441-500.
    [23]
    Mu, C., B.W. Abbott, A.J. Norris, M. Mu, C. Fan, X. Chen, L. Jia, R. Yang, et al. 2020. The status and stability of permafrost carbon on the Tibetan Plateau. Earth-Science Reviews 211:Article 103433.
    [24]
    Mu, C., B.W. Abbott, X. Wu, Q. Zhao, H. Wang, H. Su, S. Wang, and T. Gao et al. 2017. Thaw depth determines dissolved organic carbon concentration and biodegradability on the northern Qinghai-Tibetan Plateau. Geophysical Research Letters 44(18):9389-9399.
    [25]
    Paquette, M., A.C.A. Rudy, D. Fortier, and S.F. Lamoureux. 2020. Multi-scale site evaluation of a relict active layer detachment in a high Arctic landscape. Geomorphology 359:Article 107159.
    [26]
    Patton, A.I., S.L. Rathburn, D.M. Capps, D. McGrath, and R.A. Brown. 2021. Ongoing landslide deformation in thawing permafrost. Geophysical Research Letters 48(16):Article e2021GL092959.
    [27]
    Patton, A.I., S.L. Rathburn, and D.M. Capps. 2019. Landslide response to climate change in permafrost regions. Geomorphology 340:116-128.
    [28]
    Ran, Y., X. Li, and G. Cheng. 2018. Climate warming over the past half century has led to thermal degradation of permafrost on the Qinghai-Tibet Plateau. The Cryosphere 12(2):595-608.
    [29]
    Runge, A., I. Nitze, and G. Grosse. 2022. Remote sensing annual dynamics of rapid permafrost thaw disturbances with LandTrendr. Remote Sensing of Environment 268:Article 112752.
    [30]
    Torres, R., P. Snoeij, D. Geudtner, D. Bibby, M. Davidson, E. Attema, P. Potin, and B. Rommen et al. 2012. GMES Sentinel-1 Mission. Remote Sensing of Environment 120:9-24.
    [31]
    Turetsky, M.R., B.W. Abbott, M.C. Jones, K.W. Anthony, D. Olefeldt, E.A.G. Schuur, C. Koven, and A.D. McGuire et al. 2019. Permafrost collapse is accelerating carbon release. Nature 569(7754):32-34.
    [32]
    Van Everdingen, R.O. 1998. Multi-language glossary of permafrost and related ground-ice terms in Chinese, English, French, German, Icelandic, Italian, Norwegian, Polish, Romanian, Russian, Spanish, and Swedish. Ottawa:International Permafrost Association, Terminology Working Group.
    [33]
    Wang, J., C. Wang, H. Zhang, Y. Tang, X. Zhang, and Z. Zhang. 2020. Small-baseline approach for monitoring the freezing and thawing deformation of permafrost on the Beiluhe Basin, Tibetan Plateau using TerraSAR-X and Sentinel-1 data. Sensors 20(16):Article 4464.
    [34]
    Wang, L., L. Zhao, H. Zhou, S. Liu, G. Hu, Z. Li, C. Wang, and J. Zhao. 2023. Evidence of ground ice melting detected by InSAR and in situ monitoring over permafrost terrain on the Qinghai-Xizang (Tibet) Plateau. Permafrost and Periglacial Processes 34(1):52-67.
    [35]
    Witharana, C., M.R. Udawalpola, A.K. Liljedahl, M.K.W. Jones, B.M. Jones, A. Hasan, D. Joshi, and E. Manos. 2022. Automated detection of retrogressive thaw slumps in the high Arctic using high-resolution satellite imagery. Remote Sensing 14(17):Article 4132.
    [36]
    Wu, Q., Y. Hou, H. Yun, and Y. Liu. 2015. Changes in active-layer thickness and near-surface permafrost between 2002 and 2012 in alpine ecosystems, Qinghai-Xizang (Tibet) Plateau, China. Global and Planetary Change 124:149-155.
    [37]
    Wu, T., L. Zhao, R. Li, Q. Wang, C. Xie, and Q. Pang. 2013. Recent ground surface warming and its effects on permafrost on the central Qinghai-Tibet Plateau. International Journal of Climatology 33(4):920-930.
    [38]
    Xia, Z., L. Huang, C. Fan, S. Jia, Z. Lin, L. Liu, J. Luo, F. Niu, and T. Zhang. 2022. Retrogressive thaw slumps along the Qinghai-Tibet Engineering Corridor:A comprehensive inventory and their distribution characteristics. Earth System Science Data 14(9):3875-3887.
    [39]
    Xia, Z., L. Huang, and L. Liu. 2021. An inventory of retrogressive thaw slumps along the vulnerable Qinghai-Tibet Engineering Corridor. PANGAEA. https://doi.org/10.1594/PANGAEA.933957.
    [40]
    Yang, M., F.E. Nelson, N.I. Shiklomanov, D. Guo, and G. Wan. 2010. Permafrost degradation and its environmental effects on the Tibetan Plateau:A review of recent research. Earth-Science Reviews 103(1-2):31-44.
    [41]
    Yao, T., Y. Xue, D. Chen, F. Chen, L. Thompson, P. Cui, T. Koike, and W.K.-M. Lau et al. 2019. Recent Third Pole's rapid warming accompanies cryospheric melt and water cycle intensification and interactions between monsoon and environment:Multidisciplinary approach with observations, modeling, and analysis. Bulletin of the American Meteorological Society 100(3):423-444.
    [42]
    Yin, G., F. Niu, Z. Lin, J. Luo, and M. Liu. 2017. Effects of local factors and climate on permafrost conditions and distribution in Beiluhe Basin, Qinghai-Tibet Plateau, China. Science of the Total Environment 581-582:472-485.
    [43]
    Zhang, T. 2005. Influence of the seasonal snow cover on the ground thermal regime:An overview. Reviews of Geophysics 43(4):RG4002. https://doi.org/10.1029/2004RG000157.
    [44]
    Zhang, T., D. Li, A.E. East, D.E. Walling, S. Lane, I. Overeem, A.A. Beylich, M. Koppes, and X. Lu. 2022. Warming-driven erosion and sediment transport in cold regions. Nature Reviews Earth & Environment 3:832-851.
    [45]
    Zhang, Z., H. Lin, M. Wang, X. Liu, Q. Chen, C. Wang, and H. Zhang. 2022. A review of satellite synthetic aperture radar interferometry applications in permafrost regions:Current status, challenges, and trends. IEEE Geoscience and Remote Sensing Magazine 10(3):93-114.
    [46]
    Zhong, W., T. Zhang, J. Chen, J. Shang, S. Wang, C. Mu, and C. Fan. 2021. Seasonal deformation monitoring over thermokarst landforms using terrestrial laser scanning in northeastern Qinghai-Tibetan Plateau. International Journal of Applied Earth Observation and Geoinformation 103:Article 102501.
    [47]
    Zhou, Y., D. Guo, G. Qiu, G. Cheng, and S. Li. 2000. Geocryology in China. Beijing:Science Press.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (86) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return