Citation: | Peifeng He, Fujun Niu, Yunhui Huang, Saize Zhang, Chenglong Jiao. Distress Characteristics in Embankment-Bridge Transition Section of the Qinghai-Tibet Railway in Permafrost Regions[J]. International Journal of Disaster Risk Science, 2023, 14(4): 680-696. doi: 10.1007/s13753-023-00506-w |
[1] |
Chai, M., Y. Mu, J. Zhang, W. Ma, G. Liu, and J. Chen. 2018. Characteristics of asphalt pavement damage in degrading permafrost regions:Case study of the Qinghai-Tibet Highway, China. Journal of Cold Regions Engineering 32(2):Article 05018003.
|
[2] |
Chai, M., J. Zhang, W. Ma, Z. Yin, Y. Mu, and H. Zhang. 2019. Thermal influences of stabilization on warm and ice-rich permafrost with cement:Field observation and numerical simulation. Applied Thermal Engineering 148:536-543.
|
[3] |
Cheng, G. 2005. A roadbed cooling approach for the construction of Qinghai-Tibet Railway. Cold Regions Science and Technology 42(2):169-176.
|
[4] |
Cheng, G., Z. Sun, and F. Niu. 2008. Application of the roadbed cooling approach in Qinghai-Tibet Railway engineering. Cold Regions Science and Technology 53:241-258.
|
[5] |
Cheng, G., B. Tong, and X. Luo. 2012. Two important problems of embankment construction in the section of massive ground ice. Journal of Glaciology and Geocryology 3:6-12.
|
[6] |
Cheng, G., J. Zhang, Y. Sheng, and J. Chen. 2004. Principle of thermal insulation for permafrost protection. Cold Regions Science and Technology 40:71-79.
|
[7] |
Choi, J. 2013. Influence of track support stiffness of ballasted track on dynamic wheel-rail forces. Journal of Transportation Engineering 139:709-718.
|
[8] |
Doré, G., F. Niu, and H. Brooks. 2016. Adaptation methods for transportation infrastructure built on degrading permafrost. Permafrost and Periglacial Processes 27(4):352-364.
|
[9] |
Feng, W., W. Ma, D. Li, and L. Zhang. 2006. Application investigation of awning to roadway engineering on the Qinghai-Tibet Plateau. Cold Regions Science and Technology 45:51-58.
|
[10] |
Goering, D.J. 2003. Passively cooled railway embankments for use in permafrost areas. Journal of Cold Regions Engineering 17(3):119-133.
|
[11] |
Indraratna, B., M.B. Sajjad, T. Ngo, A.G. Correia, and R. Kelly. 2019. Improved performance of ballasted tracks at transition zones:A review of experimental and modelling approaches. Transportation Geotechnics 21:Article 100260.
|
[12] |
Jin, H., Z. Wei, S. Wang, Q. Yu, L. Lü, Q. Wu, and Y. Ji. 2008. Assessment of frozen-ground conditions for engineering geology along the Qinghai-Tibet Highway and Railway, China. Engineering Geology 101(3-4):96-109.
|
[13] |
Konrad, J.M., and N. Lemieux. 2005. Influence of fines on frost heave characteristics of a well-graded base-course material. Canadian Geotechnical Journal 42(2):515-527.
|
[14] |
Li, D., and D. Davis. 2005. Transition of railroad bridge approaches. Journal of Geotechnical and Geoenvironmental Engineering 131(11):1392-1398.
|
[15] |
Li, J., Y. Sheng, J. Wu, Z. Feng, Z. Ning, X. Hu, and X. Zhang. 2016. Landform-related permafrost characteristics in the source area of the Yellow River, eastern Qinghai-Tibet Plateau. Geomorphology 269:104-111.
|
[16] |
Li, S., Z. Wang, Y. Zhang, Y. Wang, and F. Liu. 2016b. Comparison of socioeconomic factors between surrounding and non-surrounding areas of the Qinghai-Tibet Railway before and after its construction. Sustainability 8:Article 776.
|
[17] |
Li, R., M. Zhang, P. Konstantinov, W. Pei, O. Tregubov, and G. Li. 2022. Permafrost degradation induced thaw settlement susceptibility research and potential risk analysis in the Qinghai-Tibet Plateau. CATENA 214:Article 106239.
|
[18] |
Lin, Z., C.R. Burn, F. Niu, J. Luo, M. Liu, and G. Yin. 2015. The thermal regime, including a reversed thermal offset, of arid permafrost sites with variations in vegetation cover density, Wudaoliang Basin, Qinghai-Tibet Plateau. Permafrost and Periglacial Processes 26(2):142-159.
|
[19] |
Lin, Z., F. Niu, and J. Xu. 2008. Secondary freezing-thawing hazards and analysis on their causes along permafrost regions Qinghai-Tibet Railway roadbed. Journal of Engineering Geology 16:666-673.
|
[20] |
Liu, J., W. Bao, L. Bao, and J. Ge. 2004. A new structure of roadbed-abutment transition part on permafrost. Journal of Glaciology and Geocryology 26:210-214.
|
[21] |
Liu, J., B. Tai, and J. Fang. 2019. Ground temperature and deformation analysis for an expressway embankment in warm permafrost regions of the Tibet Plateau. Permafrost and Periglacial Processes 30(3):208-221.
|
[22] |
Luo, L., W. Ma, Y. Zhuang, Y. Zhang, S. Yi, J. Xu, Y. Long, and D. Ma et al. 2018. The impacts of climate change and human activities on alpine vegetation and permafrost in the Qinghai-Tibet Engineering Corridor. Ecological Indicator 93:24-35.
|
[23] |
Luo, J., F. Niu, Z. Lin, M. Liu, G. Yin, and Z. Gao. 2022. Abrupt increase in thermokarst lakes on the central Tibetan Plateau over the last 50 years. CATENA 217:Article 106497.
|
[24] |
Ma, W., Y. Mu, Q. Wu, Z. Sun, and Y. Liu. 2011. Characteristics and mechanisms of embankment deformation along the Qinghai-Tibet Railway in permafrost regions. Cold Regions Science and Technology 67(3):178-186.
|
[25] |
Mei, Q.-H., J. Chen, J.-C. Wang, X. Hou, J.-Y. Zhao, S.-H. Zhang, H.-M. Dang, and J.-W. Gao. 2021. Strengthening effect of crushed rock revetment and thermosyphons in a traditional embankment in permafrost regions under warming climate. Advances in Climate Change Research 12(1):66-75.
|
[26] |
Mishra, D., H. Boler, E. Tutumluer, W. Hou, and J.P. Hyslip. 2017. Deformation and dynamic load amplification trends at railroad bridge approaches:Effects caused by high-speed passenger trains. Transportation Research Record 2607:43-53.
|
[27] |
Mu, Y., W. Ma, G. Li, F. Niu, Y. Liu, and Y. Mao. 2018. Impacts of supra-permafrost water ponding and drainage on a railway embankment in continuous permafrost zone, the interior of the Qinghai-Tibet Plateau. Cold Regions Science and Technology 154:23-31.
|
[28] |
Nan, Z., S. Li, and G. Cheng. 2005. Prediction of permafrost distribution on the Qinghai-Tibet Plateau in the next 50 and 100 years. Science in China Series D:Earth Science 48:797-804.
|
[29] |
Ni, J., T. Wu, X. Zhu, X. Wu, Q. Pang, D. Zou, J. Chen, R. Li, et al. 2021. Risk assessment of potential thaw settlement hazard in the permafrost regions of Qinghai-Tibet Plateau. Science of the Total Environment 776:Article 145855.
|
[30] |
Niu, F., Z. Lin, J. Lu, H. Liu, and Z. Xu. 2011. Characteristics of roadbed settlement in embankment-bridge transition section along the Qinghai-Tibet Railway in permafrost regions. Cold Regions Science and Technology 65(3):437-445.
|
[31] |
Ran, Y., X. Li, and G. Cheng. 2018. Climate warming over the past half century has led to thermal degradation of permafrost on the Qinghai-Tibet Plateau. The Cryosphere 12:595-608.
|
[32] |
Tai, B., Q. Wu, Z. Zhang, and X. Xu. 2020. Cooling performance and deformation behavior of crushed-rock embankments on the Qinghai-Tibet Railway in permafrost regions. Engineering Geology 265:Article 105453.
|
[33] |
Tang, C., Z. Zhu, F. Luo, Z. He, Z. Zou, and Z. Guo. 2021. Deformation behaviour and influence mechanism of thaw consolidation of embankments on the Qinghai-Tibet Railway in permafrost regions. Transportation Geotechnics 28:Article 100513.
|
[34] |
Varandas, J.N., P. Hölscher, and M.A.G. Silva. 2011. Dynamic behaviour of railway tracks on transitions zones. Computers and Structures 89(13-14):1468-1479.
|
[35] |
Vecellio, D.J., C.J. Nowotarski, and O.W. Frauenfeld. 2019. The role of permafrost in Eurasian land-atmosphere interactions. Journal of Geophysical Research:Atmospheres 124:11644-11660.
|
[36] |
Wang, J., and Q. Wu. 2017. Settlement analysis of embankment-bridge transition section in the permafrost regions of Qinghai-Tibet Railway. Journal of Glaciology and Geocryology 39:79-85.
|
[37] |
Wang, T., Z. Yue, C. Ma, and Z. Wu. 2014. An experimental study on the frost heave properties of coarse grained soils. Transportation Geotechnics 1(3):137-144.
|
[38] |
Wang, H., H. Zhang, M. Chai, J. Zhang, Z. Sun, and G. Li. 2022. Analysis of necessity and feasibility for ground improvement in warm and ice-rich permafrost regions. Advances in Civil Engineering 2022:Article e7652371.
|
[39] |
Wen, Z., Y. Sheng, W. Ma, J. Qi, and J. Wu. 2005. Analysis on effect of permafrost protection by two-phase closed thermosyphon and insulation jointly in permafrost regions. Cold Regions Science and Technology 43(3):150-163.
|
[40] |
Wu, Q., Y. Liu, and Z. Hu. 2011. The thermal effect of differential solar exposure on embankments along the Qinghai-Tibet Railway. Cold Regions Science and Technology 66(1):30-38.
|
[41] |
Wu, Q., Y. Sheng, Q. Yu, J. Chen, and W. Ma. 2020. Engineering in the rugged permafrost terrain on the roof of the world under a warming climate. Permafrost and Periglacial Processes 31(3):417-428.
|
[42] |
Wu, Q., H. Zhao, Z. Zhang, J. Chen, and Y. Liu. 2020. Long-term role of cooling the underlying permafrost of the crushed rock structure embankment along the Qinghai-Xizang Railway. Permafrost and Periglacial Processes 31(1):172-183.
|
[43] |
Yu, W., W. Liu, L. Chen, X. Yi, F. Han, and D. Hu. 2016. Evaluation of cooling effects of crushed rock under sand-filling and climate warming scenarios on the Tibet Plateau. Applied Thermal Engineering 92:130-136.
|
[44] |
Zhang, S., F. Niu, J. Wang, and T. Dong. 2021. Evaluation of damage probability of railway embankments in permafrost regions in Qinghai-Tibet Plateau. Engineering Geology 284:Article 106027.
|
[45] |
Zhang, S., F. Niu, S. Wang, Y. Sun, J. Wang, and T. Dong. 2022. Risk assessment of engineering diseases of embankment-bridge transition section for railway in permafrost regions. Permafrost and Periglacial Processes 33(1):46-62.
|
[46] |
Zhang, Z., M. Wang, X. Liu, C. Wang, H. Zhang, Y. Tang, and B. Zhang. 2019. Deformation feature analysis of Qinghai-Tibet Railway using TerraSAR-X and Sentinel-1A time-series interferometry. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 12(12):5199-5212.
|
[47] |
Zhang, M., X. Zhang, X. Xu, J. Lu, W. Pei, and Z. Xiao. 2017. Water-heat migration and frost-heave behavior of a saturated silty clay with a water supply. Experimental Heat Transfer 30(6):517-529.
|
[48] |
Zhao, H., Q. Wu, and Z. Zhang. 2019. Long-term cooling effect of the crushed rock structure embankments of the Qinghai-Tibet Railway. Cold Regions Science and Technology 160:21-30.
|
[49] |
Zhao, L., D. Zou, G. Hu, E. Du, Q. Pang, Y. Xiao, R. Li, and Y. Sheng et al. 2020. Changing climate and the permafrost environment on the Qinghai-Tibet (Xizang) Plateau. Permafrost and Periglacial Processes 31(3):396-405.
|
[50] |
Zhu, Z., C. Tang, Y. Ma, F. Luo, B. Luo, Z. Zou, Z. Guo, and X. Jang. 2022. Train-induced vibration and subsidence prediction of the permafrost subgrade along the Qinghai-Tibet Railway. Soil Dynamics Earthquake Engineering 162:Article 107433.
|