Citation: | Hamish Patten, Max Anderson Loake, David Steinsaltz. Data-Driven Earthquake Multi-impact Modeling: A Comparison of Models[J]. International Journal of Disaster Risk Science, 2024, 15(3): 421-433. doi: 10.1007/s13753-024-00567-5 |
[1] |
Albulescu, A.C. 2023. Open source data-based solutions for identifying patterns of urban earthquake systemic vulnerability in high-seismicity areas. Remote Sensing 15(5). https://doi.org/10.3390/rs15051453.
|
[2] |
CHRR (Center for Hazards and Risk Research, Columbia University) and CIESIN (Center for International Earth Science Information Network, Columbia University). 2005. Global earthquake hazard frequency and distribution. Palisades, New York: NASA Socioeconomic Data and Applications Center (SEDAC). https://doi.org/10.7927/H4765C7S.
|
[3] |
CIESIN (Center for International Earth Science Information Network). 2018. Gridded population of the world, version 4.11 (GPWv4): Population count. https://doi.org/10.7927/H4JW8BX5.
|
[4] |
Copernicus Emergency Management Service. n.d. Damage assessment. https://emergency.copernicus.eu/mapping/book/ export/html/138313. Accessed 29 May 2024.
|
[5] |
Earle, P.S., D. Wald, K. Jaiswal, T. Allen, M. Hearne, K. Marano, A.J. Hotovec, and J. Fee. 2009. Prompt Assessment of Global Earthquakes for Response (PAGER): A system for rapidly determining the impact of earthquakes worldwide. US Geological Survey Open-File Report 1131(2009): Article 15.
|
[6] |
Ehrlich, D., and G. Zeug. 2008. Assessing disaster risk of building stock: Methodology based on earth observation and geographical information systems. JRC Scientific and Technical Reports. Luxembourg: European Commission, Joint Research Centre, Institute for the Protection and Security of the Citizen.
|
[7] |
Greenwell, B.M., B.C. Boehmke, and B. Gray. 2020. Variable importance plots—An introduction to the vip Package. The R Journal 12(1): 343-366.
|
[8] |
Guha-Sapir, D. 2023. Emergency Events Database (EM-DAT)-CRED/OFDA International Disaster Database. https://public.emdat.be/. Accessed 12 May 2024.
|
[9] |
He, C., Q. Huang, X. Bai, D.T. Robinson, P. Shi, Y. Dou, B. Zhao, and J. Yan et al. 2021. A global analysis of the relationship between urbanization and fatalities in earthquake-prone areas. International Journal of Disaster Risk Science 12(6): 805-820.
|
[10] |
Heath, D.C., D.J. Wald, C.B. Worden, E.M. Thompson, and G.M. Smoczyk. 2020. A global hybrid VS 30 map with a topographic slope-based default and regional map insets. Earthquake Spectra 36(3): 1570-1584.
|
[11] |
Hengl, T., G.B.M. Heuvelink, and D.G. Rossiter. 2007. About regression-kriging: From equations to case studies. Computers & Geosciences 33(10): 1301-1315.
|
[12] |
Jaiswal, K., and D. Wald. 2010. An empirical model for global earthquake fatality estimation. Earthquake Spectra 26(4): 1017-1037.
|
[13] |
LeCun, Y., Y. Bengio, and G. Hinton. 2015. Deep learning. Nature 521(7553): 436-444.
|
[14] |
Lee, J., J.Z. Xu, K. Sohn, W. Lu, D. Berthelot, I. Gur, P. Khaitan, K.-W. Huang, et al. 2020. Assessing post-disaster damage from satellite imagery using semi-supervised learning techniques. https://doi.org/10.48550/arXiv.2011.14004. eprint: 2011.14004.
|
[15] |
Li, X., P.M. Bürgi, W. Ma, H.Y. Noh, D.J. Wald, and S. Xu. 2023. DisasterNet: Causal Bayesian networks with normalizing flows for cascading hazards estimation from satellite imagery. In Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, 6-10 August 2023, Long Beach, CA, USA, 4391-4403.
|
[16] |
Loos, S., D. Lallemant, J. Baker, J. McCaughey, S.-H. Yun, N. Budhathoki, F. Khan, and R. Singh. 2020. G-DIF: A geospatial data integration framework to rapidly estimate post-earthquake damage. Earthquake Spectra 36(4): 1695-1718.
|
[17] |
Miura, H., S. Midorikawa, and M. Matsuoka. 2016. Building damage assessment using high-resolution satellite SAR images of the 2010 Haiti earthquake. Earthquake Spectra 32(1): 591-610.
|
[18] |
OpenStreetMap contributors. 2023. Planet dump retrieved from https://planet.osm.org. https://www.openstreetmap.org. Accessed 21 Apr 2024.
|
[19] |
Paulik, R., N. Horspool, R. Woods, N. Griffiths, T. Beale, C. Magill, A. Wild, and B. Popovich et al. 2022. RiskScape: A flexible multi-hazard risk modelling engine. Natural Hazards 119: 1573-1840.
|
[20] |
Rozelle, J.R. 2018. International adaptation of the HAZUS earthquake model using global exposure datasets. Ph.D. dissertation. University of Colorado Denver, Denver, CO, USA.
|
[21] |
Shultz, S. 2017. Accuracy of HAZUS general building stock data. Natural Hazards Review. https://doi.org/10.1061/(ASCE)NH.1527-6996.0000258.
|
[22] |
Silva, V., H. Crowley, M. Pagani, D. Monelli, and R. Pinho. 2014. Development of the OpenQuake engine, the Global Earthquake Model’s open-source software for seismic risk assessment. Natural Hazards 72: 1409-1427.
|
[23] |
Silva, V., S. Akkar, J. Baker, P. Bazzurro, J.M. Castro, H. Crowley, M. Dolsek, and C. Galasso. 2019. Current challenges and future trends in analytical fragility and vulnerability modeling. Earthquake Spectra 35(4): 1927-1952.
|
[24] |
Smits, J., and I. Permanyer. 2019. The subnational human development index database. Scientific Data 6(1): 1-15.
|
[25] |
Svatonova, H. 2015. Aerial and satellite images in crisis management: Use and visual interpretation. In Proceedings of the International Conference on Military Technologies (ICMT) 2015, 19-21 May 2015, Brno, Czech Republic. https://doi.org/10.1109/MILTECHS.2015.7153705.
|
[26] |
UNDRR (United Nations Office for Disaster Risk Reduction). 2023. DesInventar-Disaster Information Management System. https://www.desinventar.net/DesInventar/download.jsp. Accessed 29 May 2024.
|
[27] |
University of California, Berkley. 2022. Global administrative areas version 4.1. https://www.gadm.org/. Accessed 13 Jan 2023.
|
[28] |
Wald, D.J. 2005. ShakeMap manual: Technical manual, user’s guide, and software guide. U.S. Geological Survey Techniques and Methods. Reston, VA: U.S. Geological Survey.
|
[29] |
Wald, D.J. 2008. Quantifying and qualifying USGS ShakeMap uncertainty. Reston, VA: US Geological Survey.
|
[30] |
World Bank. 2022. Population estimates and projections. https://datacatalog.worldbank.org/search/dataset/0037655/ Population-Estimates-and-Projections. Accessed 14 Feb 2023.
|
[31] |
Xia, Z., Z. Li, Y. Bai, J. Yu, and B. Adriano. 2022. Self-supervised learning for building damage assessment from large-scale xBD satellite imagery benchmark datasets. In Database and expert systems applications, ed. C. Strauss, A. Cuzzocrea, G. Kotsis, A.M. Tjoa, and I. Khalil, 373-386. Cham: Springer.
|
[32] |
Xu, S., J. Dimasaka, D.J. Wald, and H.Y. Noh. 2022. Seismic multi-hazard and impact estimation via causal inference from satellite imagery. Nature Communications 13(1): Article 7793.
|
[33] |
Xu, J.Z., W. Lu, Z. Li, P. Khaitan, and V. Zaytseva. 2019. Building damage detection in satellite imagery using convolutional neural networks. https://doi.org/10.48550/arXiv.1910.06444. eprint: 1910.06444.
|
[34] |
Yepes-Estrada, C., V. Silva, T. Rossetto, D. D’Ayala, I. Ioannou, A. Meslem, and H. Crowley. 2016. The global earthquake model physical vulnerability database. Earthquake Spectra 32(4): 2567-2585.
|
[35] |
Zhang, H., M. Wang, Y. Zhang, and G. Ma. 2022. TDA-Net: A novel transfer deep attention network for rapid response to building damage discovery. Remote Sensing 14(15): 3687.
|