Citation: | Runing Hou, Mingyang Wu, Zhi Li, Ningsheng Chen, Xiaohu Chen, Taixin Peng, Na Huang. Big Disaster from Small Watershed: Insights into the Failure and Disaster-Causing Mechanism of a Debris Flow on 25 September 2021 in Tianquan, China[J]. International Journal of Disaster Risk Science, 2024, 15(4): 622-639. doi: 10.1007/s13753-024-00576-4 |
[1] |
Abbate, A., M. Papini, and L. Longoni. 2021. Analysis of meteorological parameters triggering rainfall-induced landslide: A review of 70 years in Valtellina. Natural Hazards and Earth System Sciences 21: 2041-2058.
|
[2] |
Alvioli, M., and R.L. Baum. 2016. Parallelization of the TRIGRS model for rainfall-induced landslides using the message passing interface. Environmental Modelling & Software 81: 122-135.
|
[3] |
Aubertin, M., M. Mbonimpa, B.R. Bussière, and R. Chapuis. 2003. A model to predict the water retention curve from basic geotechnical properties. Canadian Geotechnical Journal 40: 1104-1122.
|
[4] |
Benda, L., and T. Dunne. 1987. Sediment routing by debris flow (Transport des sédiments par les coulées clastiques). In Erosion and sedimentation in the Pacific Rim: Proceedings of the Corvallis Symposium, 213-223. Wallingford, CT: International Association of Hydrological Sciences.
|
[5] |
Bordoni, M., C. Meisina, R. Valentino, N. Lu, M. Bittelli, and S. Chersich. 2015. Hydrological factors affecting rainfall-induced shallow landslides: From field monitoring to a simplified slope stability analysis. Engineering Geology 193: 19-37.
|
[6] |
Chen, N., P. Cui, Z. Liu, and F. Wei. 2003. Calculation of debris flow bulk density based on clay particle content. Scientia Sinica Technologica 33(s1): 164-174 (in Chinese).
|
[7] |
Chen, N., S. Tian, Y. Zhang, and Z. Wang. 2021. Soil mass domination in debris-flow disasters and strategy for hazard mitigation. Earth Science Frontiers 28: 337-348.
|
[8] |
Cui, P., G.G.D. Zhou, X.H. Zhu, and J.Q. Zhang. 2013. Scale amplification of natural debris flows caused by cascading landslide dam failures. Geomorphology 182: 173-189.
|
[9] |
D’Odorico, P., and S. Fagherazzi. 2003. A probabilistic model of rainfall-triggered shallow landslides in hollows: A long-term analysis. Water Resources Research 39(9): Article 126.
|
[10] |
Dietrich, W.E., T. Dunne, N.F. Humphrey, and L.M. Reid. 1982. Construction of sediment budgets for drainage basins. In Sediment Budgets and Routing in Forested Drainage Basins: Proceedings of the Symposium, 31 May-1 June 1982, Corvallis, Oregon, 5-23.
|
[11] |
Dowling, C.A., and P.M. Santi. 2014. Debris flows and their toll on human life: A global analysis of debris-flow fatalities from 1950 to 2011. Natural Hazards 71: 203-227.
|
[12] |
Fan, X., G. Scaringi, G. Domènech, F. Yang, X. Guo, L. Dai, C. He, and Q. Xu et al. 2019. Two multi-temporal datasets that track the enhanced landsliding after the 2008 Wenchuan Earthquake. Earth System Science Data 11: 35-55.
|
[13] |
Frank, F., B.W. McArdell, C. Huggel, and A. Vieli. 2015. The importance of entrainment and bulking on debris flow runout modeling: Examples from the Swiss Alps. Natural Hazards and Earth System Sciences 15: 2569-2583.
|
[14] |
Frank, F., B.W. McArdell, N. Oggier, P. Baer, M. Christen, and A. Vieli. 2017. Debris-flow modeling at Meretschibach and Bondasca catchments, Switzerland: Sensitivity testing of field-data-based entrainment model. Natural Hazards and Earth System Sciences 17: 801-815.
|
[15] |
Gao, Y.C., N.S. Chen, G.S. Hu, and M.F. Deng. 2019. Magnitude-frequency relationship of debris flows in the Jiangjia Gully, China. Journal of Mountain Science 16: 1289-1299.
|
[16] |
Grabs, T., J. Seibert, K. Bishop, and H. Laudon. 2009. Modeling spatial patterns of saturated areas: A comparison of the topographic wetness index and a dynamic distributed model. Journal of Hydrology 373: 15-23.
|
[17] |
Griffiths, P.G., R.H. Webb, and T.S. Melis. 2004. Frequency and initiation of debris flows in Grand Canyon, Arizona. Journal of Geophysical Research: Earth Surface 109: Article F04002.
|
[18] |
Guo, X., P. Cui, Y. Li, L. Ma, Y. Ge, and W.B. Mahoney. 2016. Intensity-duration threshold of rainfall-triggered debris flows in the Wenchuan Earthquake affected area, China. Geomorphology 253: 208-216.
|
[19] |
Hales, T.C., K.M. Scharer, and R.M. Wooten. 2012. Southern Appalachian hillslope erosion rates measured by soil and detrital radiocarbon in hollows. Geomorphology 138: 121-129.
|
[20] |
Han, M. 2018. Hazard mechanism research of wide-gentle and narrow-steep channels debris flow in Wenchuan Earthquake region. PhD dissertation. Southwest Jiaotong University, Chengdu, China.
|
[21] |
He, J., L. Zhang, R. Fan, S. Zhou, H. Luo, and D. Peng. 2022. Evaluating effectiveness of mitigation measures for large debris flows in Wenchuan, China. Landslides 19: 913-928.
|
[22] |
Hungr, O., and S.G. Evans. 2004. Entrainment of debris in rock avalanches: An analysis of a long run-out mechanism. GSA Bulletin 116: 1240-1252.
|
[23] |
Hussin, H.Y., B. Quan Luna, C.J. van Westen, M. Christen, J.P. Malet, and T.W. van Asch. 2012. Parameterization of a numerical 2-D debris flow model with entrainment: A case study of the Faucon catchment, Southern French Alps. Natural Hazards and Earth System Sciences 12: 3075-3090.
|
[24] |
Iverson, R.M. 1997. The physics of debris flows. Reviews of Geophysics 35: 245-296.
|
[25] |
Kiefer, C., P. Oswald, J. Moernaut, S.C. Fabbri, C. Mayr, M. Strasser, and M. Krautblatter. 2021. A 4000-year debris flow record based on amphibious investigations of fan delta activity in Plansee (Austria, Eastern Alps). Earth Surface Dynamics 9: 1481-1503.
|
[26] |
Lanni, C., J. McDonnell, L. Hopp, and R. Rigon. 2013. Simulated effect of soil depth and bedrock topography on near-surface hydrologic response and slope stability. Earth Surface Processes and Landforms 38: 146-159.
|
[27] |
Li, Y., J. Liu, F. Su, J. Xie, and B. Wang. 2015. Relationship between grain composition and debris flow characteristics: A case study of the Jiangjia Gully in China. Landslides 12: 19-28.
|
[28] |
Liang, W.-L., and T. Uchida. 2014. Effects of topography and soil depth on saturated-zone dynamics in steep hillslopes explored using the three-dimensional Richards’ equation. Journal of Hydrology 510: 124-136.
|
[29] |
Liang, W.-L., and T. Uchida. 2022. Performance and topographic preferences of dynamic and steady models for shallow landslide prediction in a small catchment. Landslides 19: 51-66.
|
[30] |
Liu, C., Z. Yu, and S. Zhao. 2021. A coupled SPH-DEM-FEM model for fluid-particle-structure interaction and a case study of Wenjia Gully debris flow impact estimation. Landslides 18: 2403-2425.
|
[31] |
Lu, N., and J. Godt. 2008. Infinite slope stability under steady unsaturated seepage conditions. Water Resources Research 44: Article W11404.
|
[32] |
Lu, N., J.W. Godt, and D.T. Wu. 2010. A closed-form equation for effective stress in unsaturated soil. Water Resources Research 46: W05515.
|
[33] |
Marotti, J.C., G.J.C. Gomes, R.Q. Velloso, E.A. Vargas Júnior, R.S. Nunes, and N.F. Fernandes. 2023. Exploring extreme rainfall-triggered landslides using 3D unsaturated flow, antecedent moisture and spatially distributed soil depth. CATENA 229: Article 107241.
|
[34] |
Meunier, P.C. 1996. Recognition, classification and mechanical description of debris flows. Earth-Science Reviews 40(3-4): 209-227.
|
[35] |
Montgomery, D.R. 1994. Road surface drainage, channel initiation, and slope instability. Water Resources Research 30: 1925-1932.
|
[36] |
Montgomery, D.R., and W.E. Dietrich. 1994. A physically-based model for the topographic control on shallow landsliding. Water Resources Research 30: 1153-1171.
|
[37] |
Penserini, B.D., J.J. Roering, and A. Streig. 2017. A morphologic proxy for debris flow erosion with application to the earthquake deformation cycle, Cascadia Subduction Zone, USA. Geomorphology 282: 150-161.
|
[38] |
Pérez, F.L. 2001. Matrix granulometry of catastrophic debris flows (December 1999) in central coastal Venezuela. CATENA 45: 163-183.
|
[39] |
Prancevic, J.P., M.P. Lamb, B.W. McArdell, C. Rickli, and J.W. Kirchner. 2020. Decreasing landslide erosion on steeper slopes in soil-mantled landscapes. Geophysical Research Letters 47: Article e2020GL087505.
|
[40] |
Reneau, S.L., and W.E. Dietrich. 1991. Erosion rates in the southern Oregon Coast Range: Evidence for an equilibrium between hillslope erosion and sediment yield. Earth Surface Processes and Landforms 16: 307-322.
|
[41] |
Reneau, S.I., W.E. Dietrich, D.J. Donahue, A.J.T. Jull, and M. Rubin. 1990. Late Quaternary history of colluvial deposition and erosion in hollows, central California coast ranges. Geological Society of America Bulletin 102: 969-982.
|
[42] |
Reneau, S.L., W.E. Dietrich, R.I. Dorn, C.R. Berger, and M. Rubin. 1986. Geomorphic and paleoclimatic implications of latest Pleistocene radiocarbon-dates from colluvium-mantled hollows, California. Geology 14: 655-658.
|
[43] |
Reneau, S.L., W.E. Dietrich, M. Rubin, D.J. Donahue, and A.J.T. Jull. 1989. Analysis of hillslope erosion rates using dated colluvial deposits. The Journal of Geology 97: 45-63.
|
[44] |
Rigon, R., G. Bertoldi, and T.M. Over. 2006. GEOtop: A distributed hydrological model with coupled water and energy budgets. Journal of Hydrometeorology 7: 371-388.
|
[45] |
Saulnier, G.M., K. Beven, and C. Obled. 1997. Including spatially variable effective soil depths in TOPMODEL. Journal of Hydrology 202: 158-172.
|
[46] |
Schürch, P., A.L. Densmore, N.J. Rosser, M. Lim, and B.W. McArdell. 2011a. Detection of surface change in complex topography using terrestrial laser scanning: Application to the Illgraben debris-flow channel. Earth Surface Processes and Landforms 36: 1847-1859.
|
[47] |
Schürch, P., A.L. Densmore, N.J. Rosser, and B.W. McArdell. 2011b. Dynamic controls on erosion and deposition on debris-flow fans. Geology 39: 827-830.
|
[48] |
Segoni, S., G. Rossi, and F. Catani. 2012. Improving basin-scale shallow landslide modelling using reliable soil thickness maps. Natural Hazards 61: 85-101.
|
[49] |
Simoni, S., F. Zanotti, G. Bertoldi, and R. Rigon. 2008. Modelling the probability of occurrence of shallow landslides and channelized debris flows using GEOtop-FS. Hydrological Processes 22: 532-545.
|
[50] |
Song, D.-B., Z.-Y. Yin, P.-L. Li, and J.-H. Yin. 2023. One-dimensional elastic viscoplastic finite strain consolidation model for soft clay with uncertainty. Acta Geotechnica 18: 4671-4686.
|
[51] |
Thouret, J.C., S. Antoine, C. Magill, and C. Ollier. 2020. Lahars and debris flows: Characteristics and impacts. Earth-Science Reviews 201: Article 103003.
|
[52] |
Tian, S., N. Chen, M. Rahman, G. Hu, T. Peng, Y. Zhang, and M. Liu. 2022. New insights into the occurrence of the catastrophic Zhaiban slope debris flow that occurred in a dry valley in the Hengduan Mountains in southwest China. Landslides 19: 647-657.
|
[53] |
Tian, S., G. Hu, N. Chen, M. Rahman, Z. Han, M. Somos-Valenzuela, and J.M. Habumugisha. 2023. Effects of tectonic setting and hydraulic properties on silent large-scale landslides: A case study of the Zhaobishan Landslide, China. International Journal of Disaster Risk Science 14(4): 600-617.
|
[54] |
Tian, S., G. Hu, N. Chen, M. Rahman, H. Ni, M. Somos-Valenzuela, and J.M. Habumugisha. 2022. Extreme climate and tectonic controls on the generation of a large-scale, low-frequency debris flow. Catena 212: Article 106086.
|
[55] |
Tufano, R., G. Formetta, D. Calcaterra, and P. De Vita. 2021. Hydrological control of soil thickness spatial variability on the initiation of rainfall-induced shallow landslides using a three-dimensional model. Landslides 18: 3367-3380.
|
[56] |
van Genuchten, M.T. 1980. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Science Society of America Journal 44: 892-898.
|
[57] |
Verstraeten, G., T. Rommens, I. Peeters, J. Poesen, G. Govers, and A. Lang. 2009. A temporarily changing Holocene sediment budget for a loess-covered catchment (central Belgium). Geomorphology 108: 24-34.
|
[58] |
Xiong, J., C. Tang, L. Gong, M. Chen, N. Li, Q. Shi, X. Zhang, M. Chang, and M. Li. 2022a. How landslide sediments are transferred out of an alpine basin: Evidence from the epicentre of the Wenchuan Earthquake. CATENA 208: Article 105781.
|
[59] |
Xiong, J., C. Tang, H. Tang, M. Chen, X. Zhang, Q. Shi, M. Chang, and L. Gong et al. 2022b. Long-term hillslope erosion and landslide-channel coupling in the area of the catastrophic Wenchuan Earthquake. Engineering Geology 305: Article 106727.
|
[60] |
Xue, Y., F. Miao, Y. Wu, D. Dias, and L. Li. 2023. Combining soil spatial variation and weakening of the groundwater fluctuation zone for the probabilistic stability analysis of a riverside landslide in the Three Gorges Reservoir area. Landslides 20: 1013-1029.
|
[61] |
Ye, T., P. Shi, and P. Cui. 2023. Integrated disaster risk research of the Qinghai-Tibet Plateau under climate change. International Journal of Disaster Risk Science 14(4): 507-509.
|
[62] |
Zhang, Y., N. Chen, M. Liu, T. Wang, M. Deng, K. Wu, and B.R. Khanal. 2020. Debris flows originating from colluvium deposits in hollow regions during a heavy storm process in Taining, southeastern China. Landslides 17: 335-347.
|
[63] |
Zhao, S., M. Chigira, and X. Wu. 2019. Gigantic rockslides induced by fluvial incision in the Diexi area along the eastern margin of the Tibetan Plateau. Geomorphology 338: 27-42.
|
[64] |
Zheng, H., Z. Shi, K.J. Hanley, M. Peng, S. Guan, S. Feng, K. Chen, and K. Chen. 2021. Deposition characteristics of debris flows in a lateral flume considering upstream entrainment. Geomorphology 394: Article 107960.
|
[65] |
Zhou, W., H. Qiu, L. Wang, Y. Pei, B. Tang, S. Ma, D. Yang, and M. Cao. 2022. Combining rainfall-induced shallow landslides and subsequent debris flows for hazard chain prediction. CATENA 213: Article 106199.
|