Citation: | Xiaojuan Chen, Yifu Xu, Ting Li, Jun Wei, Jidong Wu. Regional Rainfall Damage Functions to Estimate Direct Economic Losses in Rainstorms: A Case Study of the 2016 Extreme Rainfall Event in Hebei Province of China[J]. International Journal of Disaster Risk Science, 2024, 15(4): 508-520. doi: 10.1007/s13753-024-00577-3 |
[1] |
Adelodun, B., G. Odey, S. Lee, and K.S. Choi. 2023. Investigating the causal impacts relationship between economic flood damage and extreme precipitation indices based on ARDL-ECM framework: A case study of Chungcheong region in South Korea. Sustainable Cities and Society 95: 104606.
|
[2] |
Blumenthal, B., and L. Nyberg. 2019. The impact of intense rainfall on insurance losses in two Swedish cities. Journal of Flood Risk Management 12: e12504.
|
[3] |
Boulange, J., N. Hanasaki, D. Yamazaki, and Y. Pokhrel. 2021. Role of dams in reducing global flood exposure under climate change. Natural Communication 12: 417.
|
[4] |
Bryan, B.A., L. Gao, Y. Ye, X. Sun, J.D. Connor, N.D. Crossman, M. Stafford-Smith, and J. Wu et al. 2018. China’s response to a national land-system sustainability emergency. Nature 559(7713): 193-204.
|
[5] |
Chen, X. 2018. Evaluation of rainstorm and flood disaster in Hebei Province. Beijing: China Meteorological Press (in Chinese).
|
[6] |
Chen, L., Z. Yan, Q. Li, and Y. Xu. 2022. Flash flood risk assessment and driving factors: A case study of the Yantanxi River Basin, southeastern China. International Journal of Disaster Risk Science 13(2): 291-304.
|
[7] |
Cortès, M., M. Turco, M. Llasat-Botija, and M.C. Llasat. 2018. The relationship between precipitation and insurance data for floods in a Mediterranean region (northeast Spain). Natural Hazards and Earth System Sciences 18: 857-868.
|
[8] |
Davenport, F.V., M. Burke, and N.S. Diffenbaugh. 2021. Contribution of historical precipitation change to US flood damages. Proceedings of the National Academy of Sciences of the United States of America 118: e2017524118.
|
[9] |
de Moel, H., and J.C.J.H. Aerts. 2011. Effect of uncertainty in land use, damage models and inundation depth on flood damage estimates. Natural Hazards 58(1): 407-425.
|
[10] |
Ding, W., J. Wu, R. Tang, X. Chen, and Y. Xu. 2022. A review of flood risk in China during 1950-2019: Urbanization, socioeconomic impact trends and flood risk management. Water 14: 3246.
|
[11] |
DITSC (Disaster Investigation Team of the State Council). 2022. Investigation report of the “7 20” extraordinary rainstorm disaster in Zhengzhou, Henan Province. https://www.mem.gov.cn/gk/sgcc/tbzdsgdcbg/202201/P020220121639049697767.pdf. Accessed 11 May 2024.
|
[12] |
Doan, Q.V., F. Chen, H. Kusaka, A. Dipankar, A. Khan, R. Hamdi, M. Roth, and D. Niyogi. 2022. Increased risk of extreme precipitation over an urban agglomeration with future global warming. Earth’s Future 10: e2021EF002563.
|
[13] |
Eberenz, S., S. Lüthi, and D.N. Bresch. 2021. Regional tropical cyclone impact functions for globally consistent risk assessments. Natural Hazards and Earth System Sciences 21(1): 393-415.
|
[14] |
Elmer, F., A.H. Thieken, I. Pech, and H. Kreibich. 2010. Influence of flood frequency on residential building losses. Natural Hazards and Earth System Sciences 10: 2145-2159.
|
[15] |
Endendijk, T., W.J.W. Botzen, H. de Moel, J.C.J.H. Aerts, K. Slager, and M. Kok. 2023. Flood vulnerability models and household flood damage mitigation measures: An econometric analysis of survey data. Water Resource Research 59: e2022WR034192.
|
[16] |
Fuchs, S., M. Heiser, M. Schlögl, A. Zischg, M. Papathoma-Köhle, and M. Keiler. 2019. Short communication: A model to predict flood loss in mountain areas. Environmental Modelling & Software 117: 176-180.
|
[17] |
Geiger, T., K. Frieler, and A. Levermann. 2016. High-income does not protect against hurricane losses. Environmental Research Letters 11(8): 084012.
|
[18] |
Guo, X., J. Cheng, C. Yin, Q. Li, R. Chen, and J. Fang. 2023. The extraordinary Zhengzhou flood of 7/20, 2021: How extreme weather and human response compounding to the disaster. Cities 134: 104168.
|
[19] |
Hallegatte, S. 2017. A normative exploration of the link between development, economic growth, and natural risk. Economics of Disasters and Climate Change 1(1): 5-31.
|
[20] |
Hebei Bureau of Statistics. 2016. Hebei statistical yearbook. Beijing: China Statistics Press (in Chinese).
|
[21] |
Koks, E.E., B. Jongman, T.G. Husby, and W.J. Botzen. 2015. Combining hazard, exposure and social vulnerability to provide lessons for flood risk management. Environmental Science & Policy 47: 42-52.
|
[22] |
Kreibich, H., I. Seifert, B. Merz, and A.H. Thieken. 2010. Development of FLEMOcs—A new model for the estimation of flood losses in the commercial sector. Hydrological Sciences Journal 55(8): 1302-1314.
|
[23] |
Li, K., S. Wu, E. Dai, and Z. Xu. 2012. Flood loss analysis and quantitative risk assessment in China. Natural Hazards 63: 737-760.
|
[24] |
Lin, Q., P. Lima, S. Steger, T. Glade, T. Jiang, J. Zhang, T. Liu, and Y. Wang. 2021. National scale data-driven rainfall induced landslide susceptibility mapping for China by accounting for incomplete landslide data. Geoscience Frontiers 12(6): 101248.
|
[25] |
Liu, C., L. Guo, L. Ye, S. Zhang, Y. Zhao, and T. Song. 2018. A review of advances in China’s flash flood early-warning system. Natural Hazards 92: 619-634.
|
[26] |
Liu, W., J. Wu, R. Tang, M. Ye, and J. Yang. 2020. Daily precipitation threshold for rainstorm and flood disaster in the mainland of China: An economic loss perspective. Sustainability 12: 407.
|
[27] |
McGrath, H., A. Abo El Ezz, and M. Nastev. 2019. Probabilistic depth-damage curves for assessment of flood-induced building losses. Natural Hazards 97: 1-14.
|
[28] |
MEM (Ministry of Emergency Management of the People’s Republic of China). 2024. Top ten natural disasters in China for the year 2023. https://www.mem.gov.cn/xw/yjglbgzdt/202401/t20240120_475696.shtml. Accessed 11 May 2024.
|
[29] |
Mendelsohn, R., K. Emanuel, S. Chonabayashi, and L. Bakkensen. 2012. The impact of climate change on global tropical cyclone damage. Nature Climate Change 2(3): 205-209.
|
[30] |
Merz, B., H. Kreibich, and U. Lall. 2013. Multi-variate flood damage assessment: A tree-based data-mining approach. Natural Hazards and Earth System Sciences 13: 53-64.
|
[31] |
Nguyen, N.Y., D.D. Kha, and Y. Ichikawa. 2021. Developing a multivariable lookup table function for estimating flood damages of rice crop in Vietnam using a secondary research approach. International Journal of Disaster Risk Reduction 58: 102208.
|
[32] |
Papathoma-Köhle, M., M. Schlögl, L. Dosser, F. Roesch, M. Borga, M. Erlicher, M. Keiler, and S. Fuchs. 2022. Physical vulnerability to dynamic flooding: Vulnerability curves and vulnerability indices. Journal of Hydrology 607: 127501.
|
[33] |
Pastor-Paz, J., I. Noy, I. Sin, A. Sood, D. Fleming-Munoz, and S. Owen. 2020. Projecting the effect of climate change on residential property damages caused by extreme weather events. Journal of Environmental Management 276: 111012.
|
[34] |
Paulik, R., C. Zorn, and L. Wotherspoon. 2023. Evaluating the spatial application of multivariable flood damage models. Journal of Flood Risk Management 16(4): e12934.
|
[35] |
Penning-Rowsell, E., C. Johnson, S. Tunstall, J. Morris, J. Chatterton, C. Green, K. Koussela, and A. Fernandez-Bilbao. 2005. The benefits of flood and coastal risk management: A handbook of assessment techniques. London: Middlesex University Press.
|
[36] |
Pińskwar, I., A. Choryński, and D. Graczyk. 2023. Risk of flash floods in urban and rural municipalities triggered by intense precipitation in Wielkopolska of Poland. International Journal of Disaster Risk Science 14(3): 440-457.
|
[37] |
Porter, J.R., M.L. Marston, E. Shu, M. Bauer, K. Lai, B. Wilson, and M. Pope. 2023. Estimating pluvial depth-damage functions for areas within the United States using historical claims data. Natural Hazards Review 24: 1-10.
|
[38] |
Rashid, M.M., T. Wahl, G. Villarini, and A. Sharma. 2023. Fluvial flood losses in the contiguous United States under climate change. Earth’s Future 11: e2022EF003328.
|
[39] |
Shrestha, B.B., A. Kawasaki, and W.W. Zin. 2021. Development of flood damage assessment method for residential areas considering various house types for Bago region of Myanmar. International Journal of Disaster Risk Reduction 66: 102602.
|
[40] |
Spekkers, M.H., M. Kok, F.H.L.R. Clemens, and J.A.E. ten Veldhuis. 2013. A statistical analysis of insurance damage claims related to rainfall extremes. Hydrology and Earth System Sciences 17: 913-922.
|
[41] |
Tang, R., J. Wu, W. Ding, and J. Nie. 2023. Spatial scale dependence of tropical cyclone damage function: Evidence from the mainland of China. Earth’s Future 11: e2023EF003762.
|
[42] |
Tong, S., Q.C. Wu, Y.B. Qiu, M. Xiao, and L. Dong. 2021. Analysis on historical flood and countermeasures in prevention and control of flood in Daqing River Basin. Environmental Research 196: 110895.
|
[43] |
UNISDR (United Nations International Strategy for Disaster Reduction). 2015. Global assessment report on disaster risk reduction 2015. Making development sustainable: The future of disaster risk management. Geneva: United Nations.
|
[44] |
Van Ootegem, L., K. Van Herck, T. Creten, E. Verhofstadt, L. Foresti, E. Goudenhoofdt, M. Reyniers, and L. Delobbe et al. 2018. Exploring the potential of multivariate depth-damage and rainfall-damage models. Journal of Flood Risk Management 11: S916-S929.
|
[45] |
Wagenaar, D., S. Lüdtke, K. Schröter, L.M. Bouwer, and H. Kreibich. 2018. Regional and temporal transferability of multivariable flood damage models. Water Resource Research 54: 3688-3703.
|
[46] |
World Bank. 2020. Learning from experience: Insights from China’s progress in disaster risk management. Washington, DC: World Bank. http://hdl.handle.net/10986/34090. Accessed 11 May 2024.
|
[47] |
Wu, J., G. Han, H. Zhou, and N. Li. 2018. Economic development and declining vulnerability to climate-related disasters in China. Environmental Research Letters 13(3): 034013.
|
[48] |
Wu, J., Y. Li, N. Li, and P. Shi. 2018. Development of an asset value map for disaster risk assessment in China by spatial disaggregation using ancillary remote sensing data. Risk Analysis 38: 17-30.
|
[49] |
Wu, J., X. He, Y. Li, P. Shi, T. Ye, and N. Li. 2019. How earthquake-induced direct economic losses change with earthquake magnitude, asset value, residential building structural type and physical environment: An elasticity perspective. Journal of Environmental Management 231: 321-328.
|
[50] |
Ye, M., J. Wu, W. Liu, X. He, and C. Wang. 2020. Dependence of tropical cyclone damage on maximum wind speed and socioeconomic factors. Environmental Research Letters 15(9): 094061.
|
[51] |
Zhou, Q., T.E. Panduro, B.J. Thorsen, and K. Arnbjerg-Nielsen. 2013. Verification of flood damage modelling using insurance data. Water Science and Technology 68(2): 425-432.
|