Volume 15 Issue 4
Aug.  2024
Turn off MathJax
Article Contents
Gema Velásquez-Espinoza, Irasema Alcántara-Ayala. Tropical Cyclones in Nicaragua: Historical Impact and Contemporary Exposure to Disaster Risk[J]. International Journal of Disaster Risk Science, 2024, 15(4): 579-593. doi: 10.1007/s13753-024-00581-7
Citation: Gema Velásquez-Espinoza, Irasema Alcántara-Ayala. Tropical Cyclones in Nicaragua: Historical Impact and Contemporary Exposure to Disaster Risk[J]. International Journal of Disaster Risk Science, 2024, 15(4): 579-593. doi: 10.1007/s13753-024-00581-7

Tropical Cyclones in Nicaragua: Historical Impact and Contemporary Exposure to Disaster Risk

doi: 10.1007/s13753-024-00581-7
Funds:

Thanks to the National Council of Humanities, Sciences, and Technologies (CONAHCYT), which provided a student fellowship for Gema Velá

squez-Espinoza.

  • Accepted Date: 2024-08-16
  • Available Online: 2024-10-26
  • Publish Date: 2024-08-23
  • In tropical regions such as Nicaragua, the population’s vulnerability to hazards has escalated in recent decades. This increase in vulnerability has led to a surge in disasters, particularly those triggered by intense hurricanes. The implications at the national level are still poorly understood. The aim of this article has, therefore, been two-fold. First, to present a historical review of the direct effects of tropical cyclones on society in Nicaragua from 1852 to 2020. Second, to analyze the statistical probabilities of future hurricane-spawned high winds over Nicaragua. Data on cyclones hitting Nicaragua’s coasts were collected, including direct effects, wind speed, pressure, category, direction, and time of landfall. A database was created to classify intensity based on wind speed and frequency. Between 1852 and 2020, Nicaragua experienced 58 tropical cyclones with varying degrees of intensity between September and November. The trajectories of six past hurricanes were considered here regarding the areas that might have been under potential threat. Three zones of influence were delimited along each trajectory according to three wind intensities and the trajectory of these hurricanes. The consequent exposure of each Nicaraguan department and autonomous region was established. The findings are essential to delimitating priority areas for attention regarding the likely impact of tropical cyclones, mainly category 4 and 5 hurricanes. Public officials and the general public can use these data to identify the pressing need for enhanced strategies to mitigate disaster risk and avoid potential disasters.
  • loading
  • [1]
    Alcántara-Ayala, I., I. Burton, A. Lavell, A. Oliver-Smith, A. Brenes, and T. Dickinson. 2023. Forensic investigations of disasters: Past achievements and new directions. Jàmbá: Journal of Disaster Risk Studies 15(1): Article 11.
    [2]
    Alcántara-Ayala, I., C. Gomez, K. Chmutina, D. van Niekerk, E. Raju, V. Marchezini, J.R. Cadag, and J.C. Gaillard. 2023. Disaster risk. London: Taylor & Francis.
    [3]
    Baumeister, E. 2006. International migration and development in Nicaragua (Migración internacional y desarrollo en Nicaragua). Santiago, Chile: CEPAL. https://www.ecampus.iom.int/pluginfile.php/10818/block_html/content/Nicaragua%20.pdf. Accessed 4 Mar 2024 (in Spanish).
    [4]
    Betanco, B. 1979. Demographic analysis of Nicaragua (Análisis demográfico de Nicaragua). Master’s thesis. El colegio de México, Centro de Estudios Económicos y Demográficos, Managua, Nicaragua (in Spanish).
    [5]
    Blaikie, P., T. Cannon, I.D. Davis, and B. Wisner. 1994. At risk: Natural hazards, people’s vulnerability and disasters. London: Routledge.
    [6]
    Bro, A.S. 2020. Climate change adaptation, food security, and attitudes toward risk among smallholder coffee farmers in Nicaragua. Sustainability 12(17): Article 6946.
    [7]
    Busso, G. 2002. Sociodemographic vulnerability in Nicaragua: A challenge for economic growth and poverty reduction (Vulnerabilidad sociodemográfica en Nicaragua: un desafío para el crecimiento económico y la reducción de la pobreza). https://hdl.handle.net/11362/7167. Accessed 4 Nov 2023.
    [8]
    Cai, W., A. Santoso, M. Collins, B. Dewitte, C. Karamperidou, J.S. Kug, M. Lengaigne, and M.J. McPhaden et al. 2021. Changing El Niño-Southern Oscillation in a warming climate. Nature Reviews Earth & Environment 2(9): 628-644.
    [9]
    Callahan, C.W., C. Chen, M. Rugenstein, J. Bloch-Johnson, S. Yang, and E.J. Moyer. 2021. Robust decrease in El Niño/Southern Oscillation amplitude under long-term warming. Nature Climate Change 11(9): 752-757.
    [10]
    CCRIF (The Caribbean Catastrophe Risk Insurance Facility). 2017. Tropical Cyclone Nate (AL162017) wind and storm surge preliminary event report Nicaragua October 8, 2017 (Ciclón Tropical Nate (AL162017) Viento e Incremento de Marea Reporte Preliminar del Evento Nicaragua 8 de octubre de 2017). https://www.ccrif.org/sites/default/files/publications/eventreports/20171005_CCRIF_EventBriefing_TC-Nate_20171007_NIC_Final_Spanish.pdf. Accessed 23 Oct 2023 (in Spanish).
    [11]
    Central America/Caribbean landfall probability calculations. n.d. https://ininet.org/central-americacaribbean-landfall-probability-calculations.html. Accessed 10 Aug 2023.
    [12]
    CEPAL-BID. 2007. Information for disaster risk management (Información para la gestión de Riesgo de Desastres). Nicaragua: Estudio de caso de cinco países. https://repositorio.cepal.org/server/api/core/bitstreams/cff3c4fd-eb97-46c2-8570-119e34d30803/content. Accessed 10 Aug 2023 (in Spanish).
    [13]
    Consorcio ERN América Latina. n.d. Probabilistic analysis of natural hazards and risks (Análisis Probabilista de Amenazas y Riesgos Naturales). Volume III. Review of important historical events (Revisión de eventos históricos importantes). Technical Report ERN-CAPRA-T2-1. https://ecapra.org/sites/default/files/documents/ERN-CAPRA-R7-T2-1%20-%20Eventos%20Hist%C3%B3ricos%20Importantes%20NIC.pdf. Accessed 3 Sept 2023 (in Spanish).
    [14]
    DesInventar database. n.d. Web page. https://www.desinventar.net/. Accessed 1 Mar 2024.
    [15]
    Ebi, K.L., J. Vanos, J.W. Baldwin, J.E. Bell, D.M. Hondula, N.A. Errett, K. Hayes, and C.E. Reid et al. 2021. Extreme weather and climate change: Population health and health system implications. Annual Review of Public Health 42(1): 293-315.
    [16]
    Elsner, J.B., J.P. Kossin, and T.H. Jagger. 2008. The increasing intensity of the strongest tropical cyclones. Nature 455(7209): 92-95.
    [17]
    Fernández-Partagás, J., and H.F. Diaz. 1996. Atlantic hurricanes in the second half of the nineteenth century. Bulletin of the American Meteorological Society 77(12): 2899-2906.
    [18]
    Goldenberg, S.B., C.W. Landsea, A.M. Mestas-Nuñez, and W.M. Gray. 2001. The recent increase in Atlantic hurricane activity: Causes and implications. Science 293(5529): 474-479.
    [19]
    Gray, W. 1984. Atlantic seasonal hurricane frequency. Part I: El Niño and 30 mb quasi-biennial oscillation influences. Monthly Weather Review 112(9): 1649-1668.
    [20]
    Hsiang, S.M. 2010. Temperatures and cyclones strongly associated with economic production in the Caribbean and Central America. Proceedings of the National Academy of Sciences 107(35): 15367-15372.
    [21]
    Incer, J., J. Wheelock, L. Cardenal, and A. Rodríguez. 2000. Natural disasters of Nicaragua: A guide to understand and prevent them (Desastres naturales de Nicaragua. Guía para conocerlos y prevenirlos). Managua, Nicaragua: Hispamer (in Spanish).
    [22]
    INEC (Instituto Nacional de Estadísticas y Censo). 1975. Población volume III. Características Económicas. National census 1971 (Censo Nacionales 1971). Nicaragua: Población por Municipio (in Spanish).
    [23]
    INEC (Instituto Nacional de Estadísticas y Censo). 1995. National Census 1995: Population, housing, agricultural module (Censos Nacionales 1995: Población, Vivienda, Modulo Agropecuario). Buenos Aires, Argentina: INEC (in Spanish).
    [24]
    INETER (Instituto Nicaragüense de Estudios Territoriales). 1964-2020. Annual meteorological summary, precipitation (mm) (Resumen metrológico anual, precipitación (mm)). Managua, Nicaragua: INETER (in Spanish).
    [25]
    INETER (Instituto Nicaragüense de Estudios Territoriales). 1998. Rains of the century in Nicaragua (Las lluvias del siglo en Nicaragua). Managua, Nicaragua: INETER (in Spanish).
    [26]
    INIDE (Instituto Nacional de Información de Desarrollo). 2007. Statistical yearbook 2007 (Anuario Estadístico 2007). https://www.inide.gob.ni/Home/Anuarios. Accessed 10 Oct 2023 (in Spanish).
    [27]
    INIDE (Instituto Nacional de Información de Desarrollo). 2019. Statistical yearbook 2019 (Anuario Estadístico 2019). https://www.inide.gob.ni/Home/Anuarios. Accessed 10 Oct 2023 (in Spanish).
    [28]
    INIDE (Instituto Nacional de Información de Desarrollo). 2021. Statistical yearbook 2019 (Anuario Estadístico 2019). https://www.inide.gob.ni/Home/Anuarios. Accessed 10 Oct 2023 (in Spanish).
    [29]
    IPCC (Intergovernmental Panel on Climate Change). 2022. Climate change 2022: Impacts, adaptation and vulnerability. Working Group II Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. https://www.ipcc.ch/report/ar6/wg2/. Accessed 22 Oct 2023.
    [30]
    IPCC (Intergovernmental Panel on Climate Change). 2023. AR6 synthesis report: Climate change. https://www.ipcc.ch/report/ar6/syr/. Accessed 22 Oct 2023.
    [31]
    Kaplan, J., and M. DeMaria. 1995. A simple empirical model for predicting the decay of tropical cyclone winds after landfall. Journal of Applied Meteorology and Climatology 34(11): 2499-2512.
    [32]
    Klotzbach, P.J., and W. Gray. 2005. United States landfall probability webpage. http://hurricanepredictor.com/Methodology/USmethodology.pdf. Accessed 24 Jul 2023.
    [33]
    Klotzbach, P.J., K.M. Wood, C.J. Schreck III, S.G. Bowen, C.M. Patricola, and M.M. Bell. 2022. Trends in global tropical cyclone activity: 1990-2021. Geophysical Research Letters 49(6): Article e2021GL095774.
    [34]
    Knaff, J.A. 1997. Implications of summertime sea level pressure anomalies in the tropical Atlantic region. Journal of Climate 10(4): 789-804.
    [35]
    Knutson, T.R., J.L. McBride, J. Chan, K. Emanuel, G. Holland, C. Landsea, I. Held, and J.P. Kossin et al. 2010. Tropical cyclones and climate change. Nature Geoscience 3(3): 157-163.
    [36]
    Kossin, J.P., K.R. Knapp, T.L. Olander, and C.S. Velden. 2020. Global increase in major tropical cyclone exceedance probability over the past four decades. Proceedings of the National Academy of Sciences 117(22): 11975-11980.
    [37]
    Kruk, M.C., E.J. Gibney, D.H. Levinson, and M.F. Squires. 2010. A climatology of inland winds from tropical cyclones for the eastern United States. Journal of Applied Meteorology and Climatology 49(7): 1538-1547.
    [38]
    Landsea, C.W., and J.L. Franklin. 2013. Atlantic hurricane database uncertainty and presentation of a new database format. Monthly Weather Review 141(10): 3576-3592.
    [39]
    Lau, Y.-Y., T.-L. Yip, M.A. Dulebents, Y.-M. Tang, and T.A. Kawasaki. 2022. A review of historical changes of tropical and extra-tropical cyclones: A comparative analysis of the United States, Europe, and Asia. International Journal of Environmental Research and Public Health 19(8): Article 4499.
    [40]
    Lavell, A., M. Oppenheimer, C. Diop, J. Hess, R. Lempert, J. Li, R. Muir-Wood, and S. Myeong. 2012. Climate change: New dimensions in disaster risk, exposure, vulnerability, and resilience. In Managing the risks of extreme events and disasters to advance climate change adaptation: Special report of the Intergovernmental Panel on Climate Change, eds. C.B. Field, V. Barros, T.F. Stocker, D. Qin, D.J. Dokken, K.L. Ebi, M.D. Mastrandrea, and K.J. Mach et al., 25-64. Cambridge, UK: Cambridge University Press.
    [41]
    Martínez, L., D. Romero, and E.J. Alfaro. 2023. Assessment of the spatial variation in the occurrence and intensity of major hurricanes in the Western Hemisphere. Climate 11(1): Article 15.
    [42]
    Maskrey, A., and A. Lavell. 2023. The urbanisation of risk. In Urbicide: The death of the city, ed. F.C. Mena, and P.C. Pico, 235-261. Cham: Springer.
    [43]
    Mendelsohn, R., K. Emanuel, S. Chonabayashi, and L. Bakkensen. 2012. The impact of climate change on global tropical cyclone damage. Nature Climate Change 2(3): 205-209.
    [44]
    Myers, C.A., T. Slack, and J. Singelmann. 2008. Social vulnerability and migration in the wake of disaster: The case of Hurricanes Katrina and Rita. Population and Environment 29: 271-291.
    [45]
    NCEI (National Centers for Environmental Information). n.d. https://www.ncei.noaa.gov/products/international-best-track-archive. Accessed 3 Aug 2023.
    [46]
    Oliver-Smith, A., I. Alcántara-Ayala, I. Burton, and A. Lavell. 2016. Forensic investigations of disasters (FORIN). A conceptual framework and guide to research. Beijing: IRDR.
    [47]
    Parker, L., C. Bourgoin, A. Martinez-Valle, and P. Läderach. 2019. Vulnerability of the agricultural sector to climate change: The development of a pan-tropical climate risk vulnerability assessment to inform sub-national decision making. PloS One 14(3): Article e0213641.
    [48]
    Patricola, C.M., and M.F. Wehner. 2018. Anthropogenic influences on major tropical cyclone events. Nature 563(7731): 339-346.
    [49]
    PNUD (Programa de las Naciones Unidas para el Desarrollo). 2000. Human development in Nicaragua: Equity to overcome vulnerability (El Desarrollo humano en Nicaragua: Equidad para supercar la vulnerabilidad). Managua, Nicaragua: Programa de las Naciones Unidas para el Desarrollo (in Spanish).
    [50]
    Romanello, M., A. McGushin, C. Di Napoli, P. Drummond, N. Hughes, L. Jamart, H. Kennard, and P. Lampard et al. 2021. The 2021 report of the Lancet countdown on health and climate change: Code red for a healthy future. The Lancet 398(10311): 1619-1662.
    [51]
    Saunders, M.A., R.E. Chandler, C.J. Merchant, and F.P. Roberts. 2000. Atlantic hurricanes and NW Pacific typhoons: ENSO spatial impacts on occurrence and landfall. Geophysical Research Letters 27(8): 1147-1150.
    [52]
    SINAPRED (Sistema Nacional para la Prevención, Mitigación y Atención de Desastres). 2020. Final mission report: Hurricane Eta and Iota (Informe final de misión: Huracán Eta e Iota). Managua, Nicaragua: Centro de documentación del SINAPRED (in Spanish).
    [53]
    Smith, E. 1999. Atlantic and east coast hurricanes 1900-98: A frequency and intensity study for the twenty-first century. Bulletin of the American Meteorological Society 80(12): 2717-2720.
    [54]
    Sobel, A.H., S.J. Camargo, T.M. Hall, C.Y. Lee, M.K. Tippett, and A.A. Wing. 2016. Human influence on tropical cyclone intensity. Science 353(6296): 242-246.
    [55]
    Tyner, B., A. Aiyyer, J. Blaes, and D.R. Hawkins. 2015. An examination of wind decay, sustained wind speed forecasts, and gust factors for recent tropical cyclones in the Mid-Atlantic region of the United States. Weather and Forecasting 30(1): 153-176.
    [56]
    UNOSAT (The United Nations Satellite Centre). 2020. Satellite detected waters in Puerto Cabezas, Prinzapolka and Laguna de Perlas Municipality, Nicaragua, as of 8 November 2020. https://unosat.org/products/2965. Accessed 7 Aug 2023.
    [57]
    Velásquez, G.E., and I. Alcántara-Ayala. 2023. The chronological account of the impact of tropical cyclones in Nicaragua between 1971 and 2020. AUC Geographica 58(1): 74-95.
    [58]
    Walsh, K.J., J.L. McBride, P.J. Klotzbach, S. Balachandran, S.J. Camargo, G. Holland, T.R. Knutson, and J.P. Kossin et al. 2016. Tropical cyclones and climate change. Wiley Interdisciplinary Reviews: Climate Change 7(1): 65-89.
    [59]
    Weinkle, J., R. Maue, and R. Pielke Jr. 2012. Historical global tropical cyclone landfalls. Journal of Climate 25(13): 4729-4735.
    [60]
    Yap, W., Y. Lee, C. Gouramanis, A.D. Switzer, F. Yu, A.Y.A. Lau, and J.P. Terry. 2014. A historical typhoon database for the southern and eastern Chinese coastal regions, 1951 to 2012. Ocean and Coastal Management 108: 109-115.
    [61]
    Zandbergen, P.A. 2008. Exposure of US counties to Atlantic tropical storms and hurricanes, 1851-2003. Natural Hazards 48(1): 83-99.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (25) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return