Citation: | Wei Wang, Shanfeng He, Hao Guo, Jilili Abuduwaili, Alim Samat, Philippe De Maeyer, Tim Van de Voorde. Sand and Dust Storm Risk Assessment in Arid Central Asia: Implications for the Environment, Society, and Agriculture[J]. International Journal of Disaster Risk Science, 2024, 15(5): 703-718. doi: 10.1007/s13753-024-00591-5 |
[1] |
Alonso, J.A., and M.T. Lamata. 2006. Consistency in the analytic hierarchy process: A new approach. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems 14(4): 445-459.
|
[2] |
Amatulli, G., D. McInerney, T. Sethi, P. Strobl, and S. Domisch. 2020. Geomorpho90m, empirical evaluation and accuracy assessment of global high-resolution geomorphometric layers. Scientific Data 7(1): 1-18.
|
[3] |
Bahtebay, J., F. Zhang, M. Ariken, N.W. Chan, and M.L. Tan. 2021. Evaluation of the coordinated development of urbanization-resources-environment from the incremental perspective of Xinjiang, China. Journal of Cleaner Production 325: Article 129309.
|
[4] |
Boloorani, A.D., S.N. Shorabeh, N. Neysani Samany, A. Mousivand, Y. Kazemi, N. Jaafarzadeh, A. Zahedi, and J. Rabiei. 2021. Vulnerability mapping and risk analysis of sand and dust storms in Ahvaz, Iran. Environmental Pollution 279: Article 116859.
|
[5] |
Broomandi, P., K. Mohammadpour, D.G. Kaskaoutis, A. Fathian, S.F. Abdullaev, V.A. Maslov, A. Nikfal, A. Jahanbakhshi, et al. 2023. A synoptic- and remote sensing-based analysis of a severe dust storm event over Central Asia. Aerosol and Air Quality Research 23(2): Article 220309.
|
[6] |
Chen, X., J. Bai, X. Li, G. Luo, J. Li, and B.L. Li. 2013. Changes in land use/land cover and ecosystem services in Central Asia during 1990-2009. Current Opinion in Environmental Sustainability 5(1): 116-127.
|
[7] |
Chen, J., M. Gao, S. Cheng, W. Hou, M. Song, X. Liu, and Y. Liu. 2022. Global 1 km × 1 km gridded revised real gross domestic product and electricity consumption during 1992-2019 based on calibrated nighttime light data. Scientific Data 9(1): Article 202.
|
[8] |
Cui, P., J. Peng, P. Shi, H. Tang, C. Ouyang, Q. Zou, L. Liu, C. Li, and Y. Lei. 2021. Scientific challenges of research on natural hazards and disaster risk. Geography and Sustainability 2(3): 216-223.
|
[9] |
Didan, K. 2015. MOD13A1 MODIS/Terra Vegetation Indices 16-Day L3 Global 500m SIN Grid V006. Data set. NASA EOSDIS Land Processes DAAC. Sioux Falls, SD: USGS Earth Resources Observation and Science (EROS) Center.
|
[10] |
Friedl, M., and D. Sulla-Menashe. 2015. MCD12C1 MODIS/Terra+Aqua Land Cover Type Yearly L3 Global 0.05Deg CMG V006. Hampton, VA: NASA Langley Research Center.
|
[11] |
Gilbert, R.O. 1987. Statistical methods for environmental pollution monitoring. Hoboken, NJ: John Wiley & Sons.
|
[12] |
Gilbert, M., G. Nicolas, G. Cinardi, T.P. Van Boeckel, S.O. Vanwambeke, G.R.W. Wint, and T.P. Robinson. 2018. Global distribution data for cattle, buffaloes, horses, sheep, goats, pigs, chickens and ducks in 2010. Scientific Data 5(1): Article 180227.
|
[13] |
Gkeka-Serpetsidaki, P., and T. Tsoutsos. 2022. A methodological framework for optimal siting of offshore wind farms: A case study on the island of Crete. Energy 239: Article 122296.
|
[14] |
GMAO (Global Modeling and Assimilation Office). 2015. tavg1_2d_aer_Nx: 2d, 1-Hourly, Time-Averaged, Single-Level, Assimilation, Aerosol Diagnostics V5. 12.4. Greenbelt, MD: NASA Goddard Space Flight Center (NASA/GSFC).
|
[15] |
Goepel, K.D. 2018. Implementation of an online software tool for the analytic hierarchy process (AHP-OS). International Journal of the Analytic Hierarchy Process 10(3). https://doi.org/10.13033/ijahp.v10i3.590.
|
[16] |
GP-STAR. 2022. GP-STAR-UN-SPIDER Knowledge Portal. https://www.un-spider.org/network/gp-star-brochure. Accessed 10 Aug 2023.
|
[17] |
Hengl., T. 2018. Sand content in % (kg / kg) at 6 standard depths (0, 10, 30, 60, 100 and 200 cm) at 250 m resolution (Version v02). Zenodo, 24 December 2018.
|
[18] |
International Union for Conservation of Nature and Network. 2015. Gridded species distribution: Global mammal richness grids, 2015 release. Palisades, NY: NASA Socioeconomic Data and Applications Center (SEDAC).
|
[19] |
Ishizaka, A., and A. Labib. 2009. Analytic hierarchy process and expert choice: Benefits and limitations. OR Insight 22(4): 201-220.
|
[20] |
Kraemer, R., A.V. Prishchepov, D. Müller, T. Kuemmerle, V.C. Radeloff, A. Dara, A. Terekhov, and M. Frühauf. 2015. Long-term agricultural land-cover change and potential for cropland expansion in the former Virgin Lands area of Kazakhstan. Environmental Research Letters 10(5): Article 054012.
|
[21] |
Li, J., Q. He, X. Ge, and A. abbas. 2022. Spatiotemporal distribution of aerosols over the Tibet Plateau and Tarim Basin (1980-2020). Journal of Cleaner Production 374: Article 133958.
|
[22] |
Li, Y., S. Kang, X. Zhang, C. Li, J. Chen, X. Qin, L. Shao, and L. Tian. 2023. Dust dominates the summer melting of glacier ablation zones on the northeastern Tibetan Plateau. Science of the Total Environment 856: Article 159214.
|
[23] |
Liu, J., J. Ding, M. Rexiding, X. Li, J. Zhang, S. Ran, Q. Bao, and X. Ge. 2021. Characteristics of dust aerosols and identification of dust sources in Xinjiang, China. Atmospheric Environment 262: Article 118651.
|
[24] |
Meijer, J.R., M.A.J. Huijbregts, K.C.G.J. Schotten, and A.M. Schipper. 2018. Global patterns of current and future road infrastructure. Environmental Research Letters 13(6): Article 064006.
|
[25] |
Middleton, N., P. Tozer, and B. Tozer. 2019. Sand and dust storms: Underrated natural hazards. Disasters 43(2): 390-409.
|
[26] |
Middleton, N., and U. Kang. 2017. Sand and dust storms: Impact mitigation. Sustainability 9(6): Article 1053.
|
[27] |
Middleton, N. 2020. Health in dust belt cities and beyond-An essay by Nick Middleton. BMJ 371: Article m3089.
|
[28] |
Muñoz Sabater, J. 2019. ERA5-Land hourly data from 1981 to present. Copernicus Climate Change Service (C3S) Climate Data Store (CDS). Reading, UK: European Centre for Medium-Range Weather Forecasts (ECMWF).
|
[29] |
Pesaresi, M., and S. Freire. 2016. GHS Settlement grid following the REGIO model 2014 in application to GHSL Landsat and CIESIN GPW v4-multitemporal (1975-1990-2000-2015). Ispra, Italy: Joint Research Centre (JRC), European Commission.
|
[30] |
Pi, H., N.P. Webb, J. Lei, and S. Li. 2022. Soil loss and PM10 emissions from agricultural fields in the Junggar Basin over the past six decades. Journal of Soil and Water Conservation 77(2): Article 113.
|
[31] |
Poulter, B., P. Ciais, E. Hodson, H. Lischke, F. Maignan, S. Plummer, and N.E. Zimmermann. 2011. Plant functional type mapping for Earth system models. Geoscientific Model Development 4(4): 993-1010.
|
[32] |
Shepherd, G., E. Terradellas, A. Baklanov, U. Kang, W. Sprigg, S. Nickovic, A. Darvishi Boloorani, A. Al-Dousari, et al. 2016. Global assessment of sand and dust storms. Nairobi: United Nations Environment Programme (UNEP).
|
[33] |
Shi, P. 1991. On the theory of disaster research and its practice. Journal of Nanjing University No. 11: 37-42 (in Chinese).
|
[34] |
Shi, P., and R. Kasperson. 2015. World atlas of natural disaster risk. Berlin: Springer.
|
[35] |
Shi, P., J. Shuai, W. Chen, and L. Lu. 2010. Study on large-scale disaster risk assessment and risk transfer models. International Journal of Disaster Risk Science 1(2): 1-8.
|
[36] |
Sivakumar, M.V.K. 2005. Impacts of sand storms/dust storms on agriculture. In Natural disasters and extreme events in agriculture: Impacts and mitigation, ed. M.V.K. Sivakumar, R.P. Motha, and H.P. Das, 159-177. Berlin: Springer.
|
[37] |
Takeuchi, N., and Z. Li. 2008. Characteristics of surface dust on Ürümqi Glacier No. 1 in the Tien Shan Mountains, China. Arctic, Antarctic, and Alpine Research 40(4): 744-750.
|
[38] |
Tatem, A.J. 2017. WorldPop, open data for spatial demography. Scientific Data 4(1): Article 170004.
|
[39] |
UNCCD (United Nations Convention to Combat Desertification). 2022. Sand and dust storms compendium: Information and guidance on assessing and addressing the risks. Bonn, Germany: UNCCD.
|
[40] |
Wang, W., A. Samat, Y. Ge, L. Ma, A. Tuheti, S. Zou, and J. Abuduwaili. 2020. Quantitative soil wind erosion potential mapping for Central Asia using the Google Earth Engine Platform. Remote Sensing 12(20): Article 3430.
|
[41] |
Wang, W., A. Samat, J. Abuduwaili, Y. Ge, P. De Maeyer, and T. Van de Voorde. 2022. Temporal characterization of sand and dust storm activity and its climatic and terrestrial drivers in the Aral Sea region. Atmospheric Research 275: Article 106242.
|
[42] |
Weiss, D.J., A. Nelson, C.A. Vargas-Ruiz, K. Gligorić, S. Bavadekar, E. Gabrilovich, A. Bertozzi-Villa, and J. Rozier et al. 2020. Global maps of travel time to healthcare facilities. Nature Medicine 26(12): 1835-1838.
|
[43] |
Wiggs, G.F.S., S.L. O’Hara, J. Wegerdt, J. Van Der Meer, I. Small, and R. Hubbard. 2003. The dynamics and characteristics of aeolian dust in dryland Central Asia: Possible impacts on human exposure and respiratory health in the Aral Sea basin. The Geographical Journal 169(2): 142-157.
|
[44] |
Yang, H., X. Zhang, F. Zhao, J. Wang, P. Shi, and L. Liu. 2015. Mapping sand-dust storm risk of the world. In World atlas of natural disaster risk, ed. P. Shi, and R. Kasperson, 115-150. Berlin: Springer.
|
[45] |
Zhang, X.-X., C. Claiborn, J.-Q. Lei, J. Vaughan, S.-X. Wu, S.-Y. Li, L.-Y. Liu, Z.-F. Wang, et al. 2020. Aeolian dust in Central Asia: Spatial distribution and temporal variability. Atmospheric Environment 238: Article 117734.
|
[46] |
Zheng, L., Z. Xia, J. Xu, Y. Chen, H. Yang, and D. Li. 2021. Exploring annual lake dynamics in Xinjiang (China): Spatiotemporal features and driving climate factors from 2000 to 2019. Climatic Change 166(3): 1-20.
|