Citation: | Jiarui Yang, Kai Liu, Ming Wang, Gang Zhao, Wei Wu, Qingrui Yue. A Convolutional Neural Network-Weighted Cellular Automaton Model for the Fast Prediction of Urban Pluvial Flooding Processes[J]. International Journal of Disaster Risk Science, 2024, 15(5): 754-768. doi: 10.1007/s13753-024-00592-4 |
[1] |
Aldridge, T., O. Gunawan, R.J. Moore, S.J. Cole, and D. Price. 2016. A surface water flooding impact library for flood risk assessment. In Proceedings of the 3rd European Conference on Flood Risk Management (FLOODrisk 2016), 17-21 October 2016, Lyon, France.
|
[2] |
Bates, P.D., M.S. Horritt, and T.J. Fewtrell. 2010. A simple inertial formulation of the shallow water equations for efficient two-dimensional flood inundation modelling. Journal of Hydrology 387(1-2): 33-45.
|
[3] |
Beijing Institute of Municipal Engineering Design and Research. 2004. Water supply and drainage design manual, 2nd edn. Beijing: China Architecture and Building Publisher (in Chinese).
|
[4] |
Cea, L., M. Garrido, and J. Puertas. 2010. Experimental validation of two-dimensional depth-averaged models for forecasting rainfall-runoff from precipitation data in urban areas. Journal of Hydrology 382(1-4): 88-102.
|
[5] |
Changnon, S.A., and N.E. Westcott. 2007. Heavy rainstorms in Chicago: INCREASING frequency, altered impacts, and future implications. JAWRA Journal of the American Water Resources Association 38(5): 1467-1475.
|
[6] |
Couclelis, H. 1985. Cellular worlds: A framework for modeling micro-macro dynamics. Environment and Planning A 17(5): 585-596.
|
[7] |
Disaster Investigation Group of the State Council of China. 2022. Investigation report of the “7-20” extreme rainstorm disaster in Zhengzhou City, Henan (in Chinese).
|
[8] |
Donnelly, J., A. Daneshkhah, and S. Abolfathi. 2024. Physics-informed neural networks as surrogate models of hydrodynamic simulators. Science of the Total Environment 912: 168814.
|
[9] |
Dottori, F., and E. Todini. 2010. A 2D flood inundation model based on cellular automata approach. In Proceeedings of the XVIII International Conference on Computational Methods in Water Resources, 21-24 June 2010, Barcelona, Spain.
|
[10] |
Farsal, W., S. Anter, and M. Ramdani. 2018. Deep learning. In Proceedings of the 12th International Conference on Intelligent Systems: Theories and Applications, 24-25 October 2018, New York, USA.
|
[11] |
Fraehr, N., Q.J. Wang, W. Wu, and R. Nathan. 2023. Supercharging hydrodynamic inundation models for instant flood insight. Nature Water 1(10): 835-843.
|
[12] |
Fraehr, N., Q.J. Wang, W. Wu, and R. Nathan. 2024. Assessment of surrogate models for flood inundation: the physics-guided LSG model vs. state-of-the-art machine learning models. Water Research 252: 121202.
|
[13] |
Ghimire, B., A.S. Chen, M. Guidolin, E.C. Keedwell, S. Djordjević, and D.A. Savić. 2013. Formulation of a fast 2D urban pluvial flood model using a cellular automata approach. Journal of Hydroinformatics 15(3): 676-686.
|
[14] |
Goutte, C., and E. Gaussier. 2005. A probabilistic interpretation of precision, recall and F-score, with implication for evaluation. In Advances in information retrieval: 27th European Conference on IR Research, ECIR 2005, Santiago de Compostela, Spain, March 21-23, 2005, Proceedings, ed. D.E. Losada, and J.M. Fernández-Luna, 345-359. Berlin: Springer.
|
[15] |
Gu, J., Z. Wang, J. Kuen, L. Ma, A. Shahroudy, B. Shuai, T. Liu, and X. Wang et al. 2018. Recent advances in convolutional neural networks. Pattern Recognition 77: 354-377.
|
[16] |
Guha, S., R.K. Jana, and M.K. Sanyal. 2022. Artificial neural network approaches for disaster management: a literature review. International Journal of Disaster Risk Reduction 81: 103276.
|
[17] |
Guidolin, M., A.S. Chen, B. Ghimire, E.C. Keedwell, S. Djordjević, and D.A. Savić. 2016. A weighted cellular automata 2D inundation model for rapid flood analysis. Environmental Modelling & Software 84: 378-394.
|
[18] |
Guo, Z., J.P. Leitão, N.E. Simões, and V. Moosavi. 2020. Data-driven flood emulation: speeding up urban flood predictions by deep convolutional neural networks. Journal of Flood Risk Management 14(1): e12684.
|
[19] |
Gupta, H.V., H. Kling, K.K. Yilmaz, and G.F. Martinez. 2009. Decomposition of the mean squared error and NSE performance criteria: Implications for improving hydrological modelling. Journal of Hydrology 377(1-2): 80-91.
|
[20] |
Han, Y., Z. Wu, Y. Guo, and Y. Hu. 2022. Comparative study on Chicago rainstorm pattern and urban disastrous precipitation. Yangtze River 53(5): 35-40.
|
[21] |
Itami, R.M. 1994. Simulating spatial dynamics: Cellular automata theory. Landscape and Urban Planning 30(1-2): 27-47.
|
[22] |
Kabir, S., S. Patidar, X. Xia, Q. Liang, J. Neal, and G. Pender. 2020. A deep convolutional neural network model for rapid prediction of fluvial flood inundation. Journal of Hydrology 590: 125481.
|
[23] |
Keifer, C.J., and H.H. Chu. 1957. Synthetic storm pattern for drainage design. Journal of the Hydraulics Division 83(4): 1332-1325.
|
[24] |
Kiranyaz, S., T. Ince, R. Hamila, and M. Gabbouj. 2015. Convolutional neural networks for patient-specific ECG classification. In Proceedings of the 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 25-29 August 2015, Milan, Italy.
|
[25] |
Leandro, J., A.S. Chen, S. Djordjević, and D.A. Savić. 2009. Comparison of 1D/1D and 1D/2D coupled (sewer/surface) hydraulic models for urban flood simulation. Journal of Hydraulic Engineering 135(6): 495-504.
|
[26] |
LeCun, Y., and Y. Bengio. 1998. Convolutional networks for images, speech, and time series. In The handbook of brain theory and neural networks, ed. M.A. Arbib, 255-258. Cambridge, MA: MIT Press.
|
[27] |
LeCun, Y., Y. Bengio, and G. Hinton. 2015. Deep learning. Nature 521(7553): 436-444.
|
[28] |
Liao, Y., Z. Wang, X. Chen, and C. Lai. 2023. Fast simulation and prediction of urban pluvial floods using a deep convolutional neural network model. Journal of Hydrology 624: 129945.
|
[29] |
Lin, L., Z. Wu, and Q. Liang. 2019. Urban flood susceptibility analysis using a GIS-based multi-criteria analysis framework. Natural Hazards 97(2): 455-475.
|
[30] |
Löwe, R., J. Böhm, D.G. Jensen, J. Leandro, and S.H. Rasmussen. 2021. U-FLOOD-Topographic deep learning for predicting urban pluvial flood water depth. Journal of Hydrology 603: 126898.
|
[31] |
Luan, Q., X. Fu, C. Song, H. Wang, J. Liu, and Y. Wang. 2017. Runoff effect evaluation of LID through SWMM in typical mountainous, low-lying urban areas: a case study in China. Water 9(6): 439.
|
[32] |
Mishra, C., and D. Gupta. 2017. Deep machine learning and neural networks: an overview. IAES International Journal of Artificial Intelligence 6(2): 66.
|
[33] |
Nandi, S., and M.J. Reddy. 2022. An integrated approach to streamflow estimation and flood inundation mapping using VIC. RAPID and LISFLOOD-FP. Journal of Hydrology 610: 127842.
|
[34] |
Neal, J., C. Keef, P. Bates, K. Beven, and D. Leedal. 2013. Probabilistic flood risk mapping including spatial dependence. Hydrological Processes 27(9): 1349-1363.
|
[35] |
Neal, J., G. Schumann, T. Fewtrell, M. Budimir, P. Bates, and D. Mason. 2011. Evaluating a new LISFLOOD-FP formulation with data from the summer 2007 floods in Tewkesbury, UK. Journal of Flood Risk Management 4(2): 88-95.
|
[36] |
Palla, A., M. Colli, A. Candela, G. Aronica, and L. Lanza. 2018. Pluvial flooding in urban areas: the role of surface drainage efficiency. Journal of Flood Risk Management 11: S663-S676.
|
[37] |
Reichstein, M., G. Camps-Valls, B. Stevens, M. Jung, J. Denzler, N. Carvalhais, and F. Prabhat. 2019. Deep learning and process understanding for data-driven Earth system science. Nature 566(7743): 195-204.
|
[38] |
Rosbjerg, D., and H. Madsen. 2019. Initial design of urban drainage systems for extreme rainfall events using intensity-duration-area (IDA) curves and Chicago design storms (CDS). Hydrological Sciences Journal 64(12): 1397-1403.
|
[39] |
Roy, S., A. Bose, N. Singha, D. Basak, and I.R. Chowdhury. 2021. Urban waterlogging risk as an undervalued environmental challenge: An integrated MCDA-GIS based modeling approach. Environmental Challenges 4: 100194.
|
[40] |
Saleh, F., A. Ducharne, N. Flipo, L. Oudin, and E. Ledoux. 2013. Impact of river bed morphology on discharge and water levels simulated by a 1D Saint-Venant hydraulic model at regional scale. Journal of Hydrology 476: 169-177.
|
[41] |
Sampson, C.C., A.M. Smith, P.D. Bates, J.C. Neal, L. Alfieri, and J.E. Freer. 2015. A high-resolution global flood hazard model. Water Resources Research 51(9): 7358-7381.
|
[42] |
Savić, D.A., S. Djordjević, E.C. Keedwell, M. Guidolin, A.S. Chen, and B. Ghimire. 2013. Formulation of a fast 2D urban pluvial flood model using a cellular automata approach. Journal of Hydroinformatics 15(3): 676-686.
|
[43] |
Schumann, G.J.P., D. Stampoulis, A.M. Smith, C.C. Sampson, K.M. Andreadis, J.C. Neal, and P.D. Bates. 2016. Rethinking flood hazard at the global scale. Geophysical Research Letters 43(19): 10249-10256.
|
[44] |
Sidek, L.M., A.S. Jaafar, W.H.A.W.A. Majid, H. Basri, M. Marufuzzaman, M.M. Fared, and WCh. Moon. 2021. High-resolution hydrological-hydraulic modeling of urban floods using InfoWorks ICM. Sustainability 13(18): 10259.
|
[45] |
Situ, Z., Q. Wang, S. Teng, W. Feng, G. Chen, Q. Zhou, and G. Fu. 2024. Improving urban flood prediction using LSTM-DeepLabv3+ and Bayesian optimization with spatiotemporal feature fusion. Journal of Hydrology 630: 130743.
|
[46] |
Trong, N.G., P.N. Quang, N.V. Cuong, H.A. Le, H.L. Nguyen, and D. Tien Bui. 2023. Spatial prediction of fluvial flood in high-frequency tropical cyclone area using TensorFlow 1D-convolution neural networks and geospatial data. Remote Sensing 15(22): 5429.
|
[47] |
Wang, H., Y. Hu, Y. Guo, Z. Wu, and D. Yan. 2022. Urban flood forecasting based on the coupling of numerical weather model and stormwater model: a case study of Zhengzhou City. Journal of Hydrology: Regional Studies 39: 100985.
|
[48] |
Wang, H.-W., G.-F. Lin, C.-T. Hsu, S.-J. Wu, and S.S. Tfwala. 2022. Long-term temporal flood predictions made using convolutional neural networks. Water 14(24): 4134.
|
[49] |
Weesakul, U., W. Chaowiwat, M. Mudassar Rehan, and S. Weesakul. 2017. Modification of a design storm pattern for urban drainage systems considering the impact of climate change. Engineering & Applied Science Research 44(3). https://doi.org/10.14456/easr.2017.24.
|
[50] |
Willmott, C.J., and K. Matsuura. 2005. Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance. Climate Research 30(1): 79-82.
|
[51] |
Wing, O.E.J., P.D. Bates, A.M. Smith, C.C. Sampson, K.A. Johnson, J. Fargione, and P. Morefield. 2018. Estimates of present and future flood risk in the conterminous United States. Environmental Research Letters 13(3): 034023.
|
[52] |
Wolfram, S. 1984. Cellular automata as models of complexity. Nature 311(5985): 419-424.
|
[53] |
Xu, G., T. Ren, Y. Chen, and W. Che. 2020. A one-dimensional CNN-LSTM model for epileptic seizure recognition using EEG signal analysis. Frontiers in Neuroscience 14: 578126.
|
[54] |
Yan, X., K. Xu, W. Feng, and J. Chen. 2021. A rapid prediction model of urban flood inundation in a high-risk area coupling machine learning and numerical simulation approaches. International Journal of Disaster Risk Science 12(6): 903-918.
|
[55] |
Youssef, A.M., B. Pradhan, A. Dikshit, M.M. Al-Katheri, S.S. Matar, and A.M. Mahdi. 2022. Landslide susceptibility mapping using CNN-1D and 2D deep learning algorithms: comparison of their performance at Asir Region, KSA. Bulletin of Engineering Geology and the Environment 81(4): 165.
|
[56] |
Yu, H., Y. Zhao, Y. Fu, and L. Li. 2018. Spatiotemporal variance assessment of urban rainstorm waterlogging affected by impervious surface expansion: a case study of Guangzhou. China Sustainability 10(10): 3761.
|
[57] |
Zhang, W., Y. Liu, W. Tang, S. Chen, and W. Xie. 2023. Rapid spatio-temporal prediction of coastal urban floods based on deep learning approaches. Urban Climate 52: 101716.
|
[58] |
Zhang, Z., J. Tian, W. Huang, L. Yin, W. Zheng, and S. Liu. 2021. A haze prediction method based on one-dimensional convolutional neural network. Atmosphere 12(10): 1327.
|
[59] |
Zhang, Q., Z. Wu, H. Zhang, G. Dalla Fontana, and P. Tarolli. 2020. Identifying dominant factors of waterlogging events in metropolitan coastal cities: the case study of Guangzhou. China. Journal of Environmental Management 271: 110951.
|
[60] |
Zhao, G., B. Pang, Z. Xu, D. Peng, and D. Zuo. 2020. Urban flood susceptibility assessment based on convolutional neural networks. Journal of Hydrology 590: 125235.
|
[61] |
Zhao, G., Z. Xu, B. Pang, T. Tu, L. Xu, and L. Du. 2019. An enhanced inundation method for urban flood hazard mapping at the large catchment scale. Journal of Hydrology 571: 873-882.
|
[62] |
Zheng, X., C. Duan, Y. Chen, R. Li, and Z. Wu. 2023. Disaster loss calculation method of urban flood bimodal data fusion based on remote sensing and text. Journal of Hydrology: Regional Studies 47: 101410.
|
[63] |
Zounemat-Kermani, M., O. Batelaan, M. Fadaee, and R. Hinkelmann. 2021. Ensemble machine learning paradigms in hydrology: A review. Journal of Hydrology 598: 126266.
|